## LECTURE 15: THE INVERSE FUNCTION THEOREM

Welcome to the first of two major theorems about derivatives: The Inverse Function Theorem

## 1. Motivation

Goal: If $y=f(x)$, when can we solve for $x$ in terms of $y$ ? That is, when can we write $x=g(y)$ where $g$ is a smooth function?

Example 1: If $f(x)=x^{3}$ then $g(y)=y^{\frac{1}{3}}$. Notice $g$ is differentiable except at 0 , and 0 is precisely the point where $f^{\prime}(x)=0$

Example 2: If $f(x)=x^{2}$ then we can't find a global inverse (valid for all $x$ ) since $f$ isn't one-to-one, but our hope is to do this locally, around a point. Once again there is no inverse when $f^{\prime}(x)=0$.

In short, we would like to say "As long as $f^{\prime}(x) \neq 0$, we can solve for $x$ in terms of $y$, at least locally"

## 2. Inverse Function Theorem (Part 1)

Definition: $f$ is $C^{1}$ if $f$ is differentiable and $f^{\prime}$ is continuous.
Definition: $f$ is invertible if there is $g$ such that $f(g(x))=g(f(x))=$ $x$ for all $x$.

This is equivalent to $f$ being one-to-one and onto.
Definition: A matrix $A$ is invertible if there is $A^{-1}$ such that $A A^{-1}=$ $A^{-1} A=I$. Equivalently, $\operatorname{det}(A) \neq 0$

Inverse Function Theorem 1:
Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $C^{1}$. If $\operatorname{det}\left(f^{\prime}(a)\right) \neq 0$ for some $a$, there is an open neighborhood $U$ of $a$ and an open neighborhood $V$ of $f(a)$ such that $f: U \rightarrow V$ is invertible.

This theorem is incredibly powerful. It says that $f$ inherits invertibility from its derivative $f^{\prime}$. So if $f^{\prime}$ is invertible (as a linear transformation), then $f$ is invertible (as a function), at least locally.

This is one of the theorems that illustrates how $f^{\prime}$ "controls" $f$.
Intuitively, this makes sense in terms of linear approximations. If $r(h)=0$, then we get

$$
f(x+h)=f(x)+f^{\prime}(x) h
$$

So if $f^{\prime}(x)$ is invertible, then $f(x+h) \neq f(x)$ at least for small $h$
The proof is a surprising application of:
Recall: [Banach Fixed point Theorem]
Let $(X, d)$ be a complete metric space and $\phi: X \rightarrow X$ a contraction, then $\phi$ has a unique fixed point.

## Proof of Inverse Function Theorem 1:

PART 1: Find $U$ and show $f$ is one-to-one on $U$
STEP 1: Let $A=f^{\prime}(a)$ and let $\lambda$ (small) be TBA
Intuitively: Since $f^{\prime}$ is continuous at $a$, if $x$ is close to $a$ then $f^{\prime}(x)$ is close to $f^{\prime}(a)=A$

More precisely, there is $r>0$ small such that for all $x \in B(a, r)$,

$$
\left\|f^{\prime}(x)-A\right\|<\lambda
$$

Let $U=B(a, r)$ (open)
STEP 2: Fix $y \in \mathbb{R}^{n}$ and define the following function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\phi(x)=x+A^{-1}(y-f(x))
$$

Notice that $f(x)=y \Leftrightarrow \phi(x)=x$ (since the terms in parentheses are 0$)$
Our ultimate goal is to apply the Banach Fixed Point theorem to $\phi$
STEP 3: Claim: $\phi$ is a contraction
Why? By the Chain Rule, we have

$$
\begin{gathered}
\phi^{\prime}(x)=I+A^{-1}\left(-f^{\prime}(x)\right)=A^{-1} A-A^{-1} f^{\prime}(x)=A^{-1}\left(A-f^{\prime}(x)\right) \\
\text { Hence }\left\|\phi^{\prime}(x)\right\| \leq\left\|A^{-1}\right\|\left\|A-f^{\prime}(x)\right\| \stackrel{\text { STEP } 1}{<}\left\|A^{-1}\right\| \lambda
\end{gathered}
$$

Therefore, if we choose $\lambda$ such that $\left\|A^{-1}\right\| \lambda<\frac{1}{2}$ then we get

$$
\left\|\phi^{\prime}(x)\right\|<\frac{1}{2}
$$

By the version of the Mean Value Theorem from last time, we get

$$
\left|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right| \leq \frac{1}{2}\left|x_{1}-x_{2}\right|
$$

Hence $\phi$ is a contraction
STEP 4: $f$ is one-to-one on $U$
Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)=y$ then $\phi\left(x_{1}\right)=x_{1}$ and $\phi\left(x_{2}\right)=x_{2}$ and

$$
\left|x_{1}-x_{2}\right| \leq \frac{1}{2}\left|x_{1}-x_{2}\right|
$$

Which implies $x_{1}=x_{2}$ so $f$ is one-to-one
So if you define $V=f(U)$ then $f: U \rightarrow V$ is invertible.
The only thing we need to show is that:
PART 2: $V$ is open
This is where we'll need the full version of the Banach Fixed Point Theorem. That is, we will need to find the complete metric space $X$ and show that $\phi: X \rightarrow X$

STEP 1: Let $y_{0} \in V=f(U)$. Then $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in U$
We need to show that $y \in f(U)$ for all $y$ close enough to $y_{0}$
Fix $y$ such that $\left|y-y_{0}\right|<$ TBA (small)
Let $B=B\left(x_{0}, r\right)$ where $r$ is so small that $\bar{B} \subseteq U$

STEP 2: Claim: $\phi: \bar{B} \rightarrow \bar{B}$
Why? First of all, notice

$$
\begin{aligned}
\left|\phi\left(x_{0}\right)-x_{0}\right|=\left|x_{0}-A^{-1}\left(y-f\left(x_{0}\right)\right)-x 0\right|=\left|A^{-1}\left(y-y_{0}\right)\right| & \leq \| A^{-1}| |\left|y-y_{0}\right| \\
& <\frac{1}{2 \lambda}\left|y-y_{0}\right|
\end{aligned}
$$

But now if you choose $y$ such that $\left|y-y_{0}\right|<\lambda r$ then the above becomes

$$
\left|\phi\left(x_{0}\right)-x_{0}\right|<\frac{1}{2 \lambda}(\lambda r)=\frac{r}{2}
$$

Therefore if $x \in \bar{B}$ then we get by the contraction property
$\left|\phi(x)-x_{0}\right| \leq\left|\phi(x)-\phi\left(x_{0}\right)\right|+\left|\phi\left(x_{0}\right)-x_{0}\right|<\frac{1}{2} \underbrace{\left|x-x_{0}\right|}_{\leq r}+\frac{r}{2} \leq \frac{r}{2}+\frac{r}{2}=r$
(Here we used $\left|x-x_{0}\right| \leq r$ since $x \in \bar{B}$ )
Hence $\phi(x) \in \overline{B\left(x_{0}, r\right)}=: \bar{B} \checkmark$
STEP 3: Hence $\phi: \bar{B} \rightarrow \bar{B}$ is a contraction. And since $\bar{B}$ is a closed subset of the complete metric space $\mathbb{R}^{n}, \bar{B}$ is complete.

Therefore by the Banach fixed point theorem, $\phi$ has a unique fixed point $x$.

For this $x$, by definition of $\phi$, we have $f(x)=y$

## STEP 4: Conclusion:

We have shown that if $y_{0} \in V$ and if $y \in B\left(y_{0}, \lambda r\right)$ then $y=f(x)$ for some $x \in U$, that is $y \in f(U)=V$. Therefore $B\left(y_{0}, \lambda r\right) \subseteq V$ and thus
we have shown that $V$ is open
Corollary: [Open Mapping Theorem] Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $C^{1}$ and $f^{\prime}(x)$ is invertible for all $x$. If $U$ is an open subset of $\mathbb{R}^{n}$ then $f(U)$ is open as well

So $f$ maps open sets to open sets.
This is interesting because in topology, $f$ is continuous $\Leftrightarrow f^{-1}(U)$ is open whenever $U$ is open, so this is saying that $f^{-1}$ is continuous.

## 3. Inverse Function Theorem (Part 2)

Not only does the inverse $g$ exist, but it's actually differentiable!
Motivation: $(n=1)$ If $f(g(x))=x$ then differentiating this, we get

$$
f^{\prime}(g(x)) g^{\prime}(x)=1 \Rightarrow g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

This was used in Calculus to get the derivatives of $\ln (x)$ or $\sin ^{-1}(x)$ for example.

And in fact the same thing is true in higher dimensions.
Inverse Function Theorem 2
If $g: V \rightarrow U$ is the inverse of $f$, defined by $g(f(x))=x$
Then $g \in C^{1}(V)$ and $g^{\prime}(x)=\left(f^{\prime}(g(x))\right)^{-1}$

## Proof of Inverse Function Theorem 2:

STEP 1: Fix $y \in V$ and let $k$ small enough so that $y+k \in V$ (we will ultimately let $k \rightarrow 0$ )

By definition of $V=f(U)$ there is $x$ such that $y=f(x)$ and $z$ such that $y+k=f(z)$. Note that you can write $z=x+\underbrace{(z-x)}_{h}=x+h$
So $y=f(x)$ and $y+k=f(x+h)$ for some $h$
STEP 2: We would like to compare $|h|$ with $|k|$
Claim: $|h| \leq \frac{1}{\lambda}|k|$
This implies in particular that if $k \rightarrow 0$ then $h \rightarrow 0$.
Why? Notice

$$
\begin{aligned}
\phi(x+h)-\phi(x) & =\left(x+h+A^{-1}(y-f(x+h))\right)-\left(x+A^{-1}(y-f(x))\right) \\
& =h-A^{-1}(f(x+h)-f(x)) \\
& =h-A^{-1}(y+k-y) \\
& =h-A^{-1} k
\end{aligned}
$$

Hence $\left|h-A^{-1} k\right|=|\phi(x+h)-\phi(x)| \leq \frac{1}{2}|x+h-x|=\frac{1}{2}|h|$
And by the Reverse Triangle inequality, we have

$$
\left|A^{-1} k\right|=\left|A^{-1} k-h-(-h)\right| \geq\left|\left|A^{-1} k-h\right|-|-h|\right| \geq\left|\frac{1}{2}\right| h|-|h||=\left|-\frac{1}{2}\right| h| |=\frac{|h|}{2}
$$

Hence $|h| \leq 2\left|A^{-1} k\right| \leq \underbrace{2\left\|A^{-1}\right\|}_{\frac{1}{\lambda}}|k|=\frac{1}{\lambda}|k| \checkmark$

## STEP 3:

Recall: If $A$ is invertible and $\|B-A\|<\frac{1}{\left\|A^{-1}\right\|}$ then $B$ is invertible
Since $A=f^{\prime}(a)$ is invertible (by assumption), the fact that

$$
\left\|f^{\prime}(x)-A\right\|<\lambda<\frac{1}{2\left\|A^{-1}\right\|}<\frac{1}{\left\|A^{-1}\right\|}
$$

Implies that $f^{\prime}(x)$ is invertible for all $x \in U$
Let $T=\left(f^{\prime}(x)\right)^{-1}$
Claim: $g^{\prime}(y)=T$
Then we would be done because then

$$
g^{\prime}(y)=T=\left(f^{\prime}(x)\right)^{-1}=\left(f^{\prime}(g(y))\right)^{-1} \checkmark
$$

## STEP 4: Proof of Claim:

$$
\begin{aligned}
\underbrace{f(x+h)}_{y+k}-\underbrace{f(x)}_{y}-f^{\prime}(x) h & =k-f^{\prime}(x) h \\
& =\left(f^{\prime}(x)\right)\left(\left(f^{\prime}(x)\right)^{-1} k-h\right) \\
& =\left(f^{\prime}(x)\right)(T k-h) \\
& =\left(f^{\prime}(x)\right)(T k-(\underbrace{x+h}_{g(y+k)}-\underbrace{x}_{g(y)})) \\
& =\left(f^{\prime}(x)\right)(T k-g(y+k)+g(y)) \\
& =-f^{\prime}(x)(g(y+k)-g(y)-T k)
\end{aligned}
$$

Multiplying both sides by $-\left(f^{\prime}(x)\right)^{-1}=-T$ it then follows that

$$
g(y+k)-g(y)-T k=-T\left(f(x+h)-f(x)-f^{\prime}(x) h\right)
$$

$$
\begin{aligned}
\frac{|g(y+k)-g(y)-T k|}{|k|} & \leq \frac{\|T\|\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|k|} \\
& =\|T\|\left(\frac{|h|}{|k|}\right) \frac{\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|h|} \\
\stackrel{\text { STEP }}{\leq} & \|T\|\left(\frac{1}{\lambda}\right) \frac{\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|h|}
\end{aligned}
$$

Now let $k \rightarrow 0$.

Then, by STEP 1 we have $h \rightarrow 0$ and so the right-hand-side of goes to 0 by definition of $f^{\prime}(x)$, which forces the left-hand-side goes to 0 .

Therefore in fact $g^{\prime}(y)=T \checkmark$
STEP 5: $g \in C^{1}$
Since $g$ is differentiable, $g$ is continuous, therefore $f^{\prime}(g(y))$ is continuous, and so is $\left(f^{\prime}(g(y))\right)^{-1}=g^{\prime}(y)$ since the mapping $A \rightarrow A^{-1}$ is continuous

Definition: $f$ is a $C^{1}$ diffeomorphism if $f$ is $C^{1}$, one-to-one, onto, and $f^{-1}$ is $C^{1}$

Corollary: If $\operatorname{det}\left(f^{\prime}(a)\right) \neq 0$, for some $a$, then $f$ is locally a $C^{1}$ diffeomorphism.

