LECTURE 15: THE INVERSE FUNCTION THEOREM

Welcome to the first of two major theorems about derivatives: The
Inverse Function Theorem

1. MOTIVATION

Goal: If y = f(z), when can we solve for x in terms of y? That is,
when can we write z = g(y) where ¢ is a smooth function?

Example 1: If f(z) = 2* then g(y) = y3. Notice g is differentiable
except at 0, and 0 is precisely the point where f'(z) =0

Example 2: If f(x) = 2* then we can’t find a global inverse (valid
for all x) since f isn’t one-to-one, but our hope is to do this locally,

around a point. Once again there is no inverse when f/(z) = 0.

In short, we would like to say “As long as f'(z) # 0, we can solve for
x in terms of y, at least locally”

2. INVERSE FUNCTION THEOREM (PART 1)

Definition: f is C!if f is differentiable and f’ is continuous.

Definition: f isinvertible if there is g such that f(g(z)) = g(f(x)) =
x for all .

Date: Wednesday, July 27, 2022.
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This is equivalent to f being one-to-one and onto.

Definition: A matrix A is invertible if there is A~! such that AA~! =
A71A = I. Equivalently, det(A) # 0

Inverse Function Theorem 1:

Suppose f : R® — R" is Ct. If det(f'(a)) # 0 for some a, there is an
open neighborhood U of a and an open neighborhood V' of f(a) such
that f: U — V is invertible.

This theorem is incredibly powerful. It says that f inherits invertibil-
ity from its derivative f’. So if f’ is invertible (as a linear transforma-
tion), then f is invertible (as a function), at least locally.

This is one of the theorems that illustrates how [’ “controls” f.

Intuitively, this makes sense in terms of linear approximations. If
r(h) =0, then we get

flz+h) = f(z)+ f(x)h
So if f'(x) is invertible, then f(x + h) # f(x) at least for small h
The proof is a surprising application of:
Recall: [Banach Fixed point Theorem]

Let (X,d) be a complete metric space and ¢ : X — X a contraction,
then ¢ has a unique fixed point.

Proof of Inverse Function Theorem 1:
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PART 1: Find U and show f is one-to-one on U
STEP 1: Let A= f'(a) and let A (small) be TBA

Intuitively: Since f’ is continuous at a, if z is close to a then f'(x)
is close to f'(a) = A

More precisely, there is 7 > 0 small such that for all x € B(a,r),

1F"(z) — All < A

Let |U = B(a, )| (open)

STEP 2: Fix y € R"” and define the following function ¢ : R” — R"

o(x) =z + A (y - f(2))

Notice that f(z) =y < ¢(x) = x (since the terms in parentheses are 0)
Our ultimate goal is to apply the Banach Fixed Point theorem to ¢
STEP 3: Claim: ¢ is a contraction
Why? By the Chain Rule, we have

Fa)=T1+A" (—f(2) =A"A- A" f(z) = A7 (A— f'(z))

STEP 1
Hence ||¢/(2)]| < [[A7Y[ 1A= f@)l <~ AT A

Therefore, if we choose A such that HA‘lH A< % then we get

1

I6'(e) | <
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By the version of the Mean Value Theorem from last time, we get

(6(a1) = 0le2)| < 5 o1 —

Hence ¢ is a contraction

STEP 4: f is one-to-one on U
Suppose f(z1) = f(x3) =y then ¢(z1) = 21 and ¢(x2) = x9 and
1
|21 — 29| < 5 |21 — 29|

Which implies 1 = z9 so f is one-to-one

So if you define |V = f(U)|then f: U — V is invertible.

The only thing we need to show is that:

PART 2: V is open

This is where we’ll need the full version of the Banach Fixed Point
Theorem. That is, we will need to find the complete metric space X
and show that ¢ : X — X

STEP 1: Let yo € V = f(U). Then yy = f(x) for some zy € U

We need to show that y € f(U) for all y close enough to yq

Fix y such that |y — 9| < TBA (small)

Let | B = B(xg,r)| where 7 is so small that B C U
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STEP 2: Claim: ¢: B — B

Why? First of all, notice

[6(x0) — wo| = |5 — A7 (y = f(=0)) — 2] = [A7" (y — o) | < [|A7"|| [y — wol
<% [y — yol

But now if you choose y such that |y — yo| < Ar then the above becomes

1 r

AN =5

Therefore if z € B then we get by the contraction property

(o) — 20| <

\b(z) — xo| < |d(x) — d(x0)| + |P(20) — 0| < % |z — x| +g

(Here we used |z — x| < r since z € B)
Hence ¢(z) € B(xy,7) =: B vV

STEP 3: Hence ¢ : B — B is a contraction. And since B is a closed
subset of the complete metric space R”, B is complete.

Therefore by the Banach fixed point theorem, ¢ has a unique fixed
point x.

For this x, by definition of ¢, we have f(x) =y
STEP 4: Conclusion:

We have shown that if yg € V and if y € B(yp, A\r) then y = f(x) for
some x € U, that is y € f(U) = V. Therefore B(yp, Ar) C V and thus
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we have shown that V' is open ]

Corollary: [Open Mapping Theorem| Suppose f : R" — R" is C! and
f'(x) is invertible for all . If U is an open subset of R" then f(U) is
open as well

So f maps open sets to open sets.

This is interesting because in topology, f is continuous < f~1(U) is
open whenever U is open, so this is saying that f~! is continuous.

3. INVERSE FUNCTION THEOREM (PART 2)
Not only does the inverse g exist, but it’s actually differentiable!
Motivation: (n = 1) If f(g(x)) = x then differentiating this, we get

/ / = "(z) = ;
o))y () =1 = g'(2) = 5o

This was used in Calculus to get the derivatives of In(z) or sin'(x)
for example.

And in fact the same thing is true in higher dimensions.

Inverse Function Theorem 2

If g: V — U is the inverse of f, defined by g(f(z)) =«
Then g € C'(V) and ¢'(z) = (f'(g(x)))""

Proof of Inverse Function Theorem 2:
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STEP 1: Fix y € V and let k£ small enough so that y + k € V (we
will ultimately let k& — 0)

By definition of V' = f(U) there is « such that y = f(x) and z such
that y + & = f(z). Note that you can write z =z + (z —x) =x + h
~—

h

So|y = f(x)|and |y + k = f(x + h)| for some h

STEP 2: We would like to compare |h| with |k|
Claim: || < 1|k

This implies in particular that if £ — 0 then h — 0.
Why? Notice

¢(x+h) —p(x) = (x+h+ A" (y— flx+h) - (#+ A" (y— f(x)))
=h— A7 (f(z+h) — f(z))
=h— A" (y+k—vy)
—h— Ak

1 1
Hence [h—A™k| = |é(z +h) = o) < 5 |z +h— x| = 5 |

And by the Reverse Triangle inequality, we have

1 1 h
A7k = |[A k—h — (=h)| > ||A7'k — h| = |—h|| > '5 |h| — |h\' = ‘—5 |h\| = |—2|

Hence || < 2|A~'k| < 2||A7|| [k = ~ k| v
—— A

>|=



8 LECTURE 15: THE INVERSE FUNCTION THEOREM

STEP 3:
Recall: If A is invertible and ||B — Al| < Hx4+1H then B is invertible

Since A = f’(a) is invertible (by assumption), the fact that

1 - 1
2[[ A= 1A
Implies that f’(z) is invertible for all x € U

1/ (x) = All <A <

Let [T = (f/(x)) "

Claim: ¢'(y) =T

Then we would be done because then

J) =T= ()" =(flgy) v
STEP 4: Proof of Claim:
f(z+h) —@—f’(x)h =k — f'(x)h

y+k Yy

(@) (@) k= h)
(f'(@) (Th — h)

=(f'(@) | Tk - (@+h-)
g(y+k) 9(y)

(f (@) (Tk — g(y + k) + 9(y))
=— f'(x) (g(y + k) — g(y) — Tk)

Multiplying both sides by — (f'(z))"" = —T it then follows that
9 +k) —gly) =Tk = =T (f(z + h) = f(x) = f'(x)h)
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9(y + k) —g(y) = Tk| _[IT[[|f(z+h) = f(z) = f(z)h]

“ _ HI‘(M) (2) — F(x)h]
I\ |f(x+h)— f(z)— f(z)h
7] (m) i
R (%) fer B f;l(\) —H
Now let & — 0.

Then, by STEP 1 we have h — 0 and so the right-hand-side of goes
to 0 by definition of f’(x), which forces the left-hand-side goes to 0.

Therefore in fact ¢'(y) =T v

STEP 5: g c C!

Since g is differentiable, g is continuous, therefore f’(¢g(y)) is contin-
uous, and so is (f'(g(y)))”"" = ¢'(y) since the mapping A — A1 is

continuous L]

Definition: f is a C'! diffeomorphism if f is C', one-to-one, onto,
and f~1is O!

Corollary: If det(f'(a)) # 0, for some a, then f is locally a C*
diffeomorphism.
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