
LECTURE 15: THE INVERSE FUNCTION THEOREM

Welcome to the first of two major theorems about derivatives: The
Inverse Function Theorem

1. Motivation

Goal: If y = f(x), when can we solve for x in terms of y? That is,
when can we write x = g(y) where g is a smooth function?

Example 1: If f(x) = x3 then g(y) = y
1
3 . Notice g is differentiable

except at 0, and 0 is precisely the point where f ′(x) = 0

Example 2: If f(x) = x2 then we can’t find a global inverse (valid
for all x) since f isn’t one-to-one, but our hope is to do this locally,
around a point. Once again there is no inverse when f ′(x) = 0.

In short, we would like to say “As long as f ′(x) 6= 0, we can solve for
x in terms of y, at least locally”

2. Inverse Function Theorem (Part 1)

Definition: f is C1 if f is differentiable and f ′ is continuous.

Definition: f is invertible if there is g such that f(g(x)) = g(f(x)) =
x for all x.
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This is equivalent to f being one-to-one and onto.

Definition: A matrix A is invertible if there is A−1 such that AA−1 =
A−1A = I. Equivalently, det(A) 6= 0

Inverse Function Theorem 1:

Suppose f : Rn → Rn is C1. If det(f ′(a)) 6= 0 for some a, there is an
open neighborhood U of a and an open neighborhood V of f(a) such
that f : U → V is invertible.

This theorem is incredibly powerful. It says that f inherits invertibil-
ity from its derivative f ′. So if f ′ is invertible (as a linear transforma-
tion), then f is invertible (as a function), at least locally.

This is one of the theorems that illustrates how f ′ “controls” f .

Intuitively, this makes sense in terms of linear approximations. If
r(h) = 0, then we get

f(x+ h) = f(x) + f ′(x)h

So if f ′(x) is invertible, then f(x+ h) 6= f(x) at least for small h

The proof is a surprising application of:

Recall: [Banach Fixed point Theorem]

Let (X, d) be a complete metric space and φ : X → X a contraction,
then φ has a unique fixed point.

Proof of Inverse Function Theorem 1:
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PART 1: Find U and show f is one-to-one on U

STEP 1: Let A = f ′(a) and let λ (small) be TBA

Intuitively: Since f ′ is continuous at a, if x is close to a then f ′(x)
is close to f ′(a) = A

More precisely, there is r > 0 small such that for all x ∈ B(a, r),

‖f ′(x)− A‖ < λ

Let U = B(a, r) (open)

STEP 2: Fix y ∈ Rn and define the following function φ : Rn → Rn

φ(x) = x+ A−1(y − f(x))

Notice that f(x) = y ⇔ φ(x) = x (since the terms in parentheses are 0)

Our ultimate goal is to apply the Banach Fixed Point theorem to φ

STEP 3: Claim: φ is a contraction

Why? By the Chain Rule, we have

φ′(x) = I + A−1 (−f ′(x)) = A−1A− A−1f ′(x) = A−1 (A− f ′(x))

Hence ‖φ′(x)‖ ≤
∥∥A−1∥∥ ‖A− f ′(x)‖

STEP 1
<

∥∥A−1∥∥λ
Therefore, if we choose λ such that

∥∥A−1∥∥λ < 1
2 then we get

‖φ′(x)‖ < 1

2
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By the version of the Mean Value Theorem from last time, we get

|φ(x1)− φ(x2)| ≤
1

2
|x1 − x2|

Hence φ is a contraction

STEP 4: f is one-to-one on U

Suppose f(x1) = f(x2) = y then φ(x1) = x1 and φ(x2) = x2 and

|x1 − x2| ≤
1

2
|x1 − x2|

Which implies x1 = x2 so f is one-to-one

So if you define V = f(U) then f : U → V is invertible.

The only thing we need to show is that:

PART 2: V is open

This is where we’ll need the full version of the Banach Fixed Point
Theorem. That is, we will need to find the complete metric space X
and show that φ : X → X

STEP 1: Let y0 ∈ V = f(U). Then y0 = f(x0) for some x0 ∈ U

We need to show that y ∈ f(U) for all y close enough to y0

Fix y such that |y − y0| < TBA (small)

Let B = B(x0, r) where r is so small that B ⊆ U
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STEP 2: Claim: φ : B → B

Why? First of all, notice

|φ(x0)− x0| =
∣∣
��x0 − A−1 (y − f(x0))−��x0

∣∣ =
∣∣A−1 (y − y0)

∣∣ ≤∥∥A−1∥∥ |y − y0|
<

1

2λ
|y − y0|

But now if you choose y such that |y − y0| < λr then the above becomes

|φ(x0)− x0| <
1

2λ
(λr) =

r

2

Therefore if x ∈ B then we get by the contraction property

|φ(x)− x0| ≤ |φ(x)− φ(x0)|+ |φ(x0)− x0| <
1

2
|x− x0|︸ ︷︷ ︸
≤r

+
r

2
≤ r

2
+
r

2
= r

(Here we used |x− x0| ≤ r since x ∈ B)

Hence φ(x) ∈ B(x0, r) =: B X

STEP 3: Hence φ : B → B is a contraction. And since B is a closed
subset of the complete metric space Rn, B is complete.

Therefore by the Banach fixed point theorem, φ has a unique fixed
point x.

For this x, by definition of φ, we have f(x) = y

STEP 4: Conclusion:

We have shown that if y0 ∈ V and if y ∈ B(y0, λr) then y = f(x) for
some x ∈ U , that is y ∈ f(U) = V . Therefore B(y0, λr) ⊆ V and thus
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we have shown that V is open �

Corollary: [Open Mapping Theorem] Suppose f : Rn → Rn is C1 and
f ′(x) is invertible for all x. If U is an open subset of Rn then f(U) is
open as well

So f maps open sets to open sets.

This is interesting because in topology, f is continuous ⇔ f−1(U) is
open whenever U is open, so this is saying that f−1 is continuous.

3. Inverse Function Theorem (Part 2)

Not only does the inverse g exist, but it’s actually differentiable!

Motivation: (n = 1) If f(g(x)) = x then differentiating this, we get

f ′(g(x))g′(x) = 1⇒ g′(x) =
1

f ′(g(x))

This was used in Calculus to get the derivatives of ln(x) or sin−1(x)
for example.

And in fact the same thing is true in higher dimensions.

Inverse Function Theorem 2

If g : V → U is the inverse of f , defined by g(f(x)) = x

Then g ∈ C1(V ) and g′(x) = (f ′(g(x)))
−1

Proof of Inverse Function Theorem 2:
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STEP 1: Fix y ∈ V and let k small enough so that y + k ∈ V (we
will ultimately let k → 0)

By definition of V = f(U) there is x such that y = f(x) and z such
that y + k = f(z). Note that you can write z = x+ (z − x)︸ ︷︷ ︸

h

= x+ h

So y = f(x) and y + k = f(x+ h) for some h

STEP 2: We would like to compare |h| with |k|

Claim: |h| ≤ 1
λ |k|

This implies in particular that if k → 0 then h→ 0.

Why? Notice

φ(x+ h)− φ(x) =
(
��x+ h+ A−1 (��y − f(x+ h))

)
−
(
��x+ A−1 (��y − f(x))

)
=h− A−1 (f(x+ h)− f(x))

=h− A−1 (y + k − y)

=h− A−1k

Hence
∣∣h− A−1k∣∣ = |φ(x+ h)− φ(x)| ≤ 1

2
|x+ h− x| = 1

2
|h|

And by the Reverse Triangle inequality, we have

∣∣A−1k∣∣ =
∣∣A−1k−h− (−h)

∣∣ ≥ ∣∣∣∣A−1k − h∣∣− |−h|∣∣ ≥ ∣∣∣∣12 |h| − |h|
∣∣∣∣ =

∣∣∣∣−1

2
|h|
∣∣∣∣ =
|h|
2

Hence |h| ≤ 2
∣∣A−1k∣∣ ≤ 2

∥∥A−1∥∥︸ ︷︷ ︸
1
λ

|k| = 1

λ
|k|X
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STEP 3:

Recall: If A is invertible and ‖B − A‖ < 1
‖A−1‖ then B is invertible

Since A = f ′(a) is invertible (by assumption), the fact that

‖f ′(x)− A‖ < λ <
1

2 ‖A−1‖
<

1

‖A−1‖
Implies that f ′(x) is invertible for all x ∈ U

Let T = (f ′(x))−1

Claim: g′(y) = T

Then we would be done because then

g′(y) = T = (f ′(x))
−1

= (f ′(g(y)))
−1X

STEP 4: Proof of Claim:

f(x+ h)︸ ︷︷ ︸
y+k

− f(x)︸︷︷︸
y

−f ′(x)h =k − f ′(x)h

= (f ′(x))
(

(f ′(x))
−1
k − h

)
= (f ′(x)) (Tk − h)

= (f ′(x))

Tk − (x+ h︸ ︷︷ ︸
g(y+k)

− x︸︷︷︸
g(y)

)


= (f ′(x)) (Tk − g(y + k) + g(y))

=− f ′(x) (g(y + k)− g(y)− Tk)

Multiplying both sides by − (f ′(x))−1 = −T it then follows that

g(y + k)− g(y)− Tk = −T (f(x+ h)− f(x)− f ′(x)h)
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|g(y + k)− g(y)− Tk|
|k|

≤‖T‖ |f(x+ h)− f(x)− f ′(x)h|
|k|

= ‖T‖
(
|h|
|k|

)
|f(x+ h)− f(x)− f ′(x)h|

|h|
STEP 1
≤ ‖T‖

(
1

λ

)
|f(x+ h)− f(x)− f ′(x)h|

|h|
Now let k → 0.

Then, by STEP 1 we have h → 0 and so the right-hand-side of goes
to 0 by definition of f ′(x), which forces the left-hand-side goes to 0.

Therefore in fact g′(y) = T X

STEP 5: g ∈ C1

Since g is differentiable, g is continuous, therefore f ′(g(y)) is contin-
uous, and so is (f ′(g(y)))−1 = g′(y) since the mapping A → A−1 is
continuous �

Definition: f is a C1 diffeomorphism if f is C1, one-to-one, onto,
and f−1 is C1

Corollary: If det (f ′(a)) 6= 0, for some a, then f is locally a C1

diffeomorphism.
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