LECTURE 16: CONTINUOUS FUNCTIONS (II)

1. SEQUENTIAL VS. ¢ — 0 CONTINUITY

Video: Equivalent Definitions

Let’s show that the two definitions of continuity are equivalent:

f is continuous at z if, whenever (z,) is a sequence that con-
verges to xg, then f(x,) converges to f(x)

f is continuous at x if for all € > 0 there is 6 > 0 such that, for
all x, if |z — xg| < 0, then |f(x) — f(xo)| <€

‘ The two definitions are equivalent \
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https://youtu.be/aN5qICo2Dgk
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Proof: (Definition 2 = Definition 1)

Suppose the € — § definition holds, and let (z,,) be a sequence that
converges to x.

Goal: Show f(x,) converges to f(zy).
Let € > 0 be given

Then, by € — 4, there is § > 0 such that for all z, if |z — 2| < 6, then
|f(z) — f(zo)| < € (this is just € — 0)

However, since x,, — xg, by definition of the limit of sequences (but
with § instead of €) there is N such that if n > N, then |z, — x| < 0

But since |z, — x¢| < 8, by € — &, we have |f(z,) — f(x0)| < e.
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So for all € > 0, there is N such that if n > N, then |f(z,) — f(z0)] < €,
so f(zn) = f(x0). v

Intuitively: If x, converges to xzy, then eventually x, is in the red
zone where |z — | < ¢, and therefore f(x,) is e—close to f(x), which
forces f(x,) to converge to f(x¢)

f(x0) / | f(xn) c

|
Xo < Xn

|
|
|
~ |
I
|

Proof: (Definition 1 = Definition 2)
We will show (Not 2 = Not 1)

Suppose € — ¢ definition fails, that is there is € > 0 such that for all
d > 0, there is x such that |x — x| < d but |f(z) — f(x0)| > €.
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The idea is simply to use the above definition but with § = %

d=1/n
<

VA ig

f(xo) T~

f(xn)

|

| .
(Xn) Xo
With € as above, for every n, with § = %, there is some x, such that
|2, — wo| < 5 but [ f(z,) — f(w0)] > €
Since |z, — x| < %, we get x,, — xo by the Squeeze Theorem

But since |f(z,) — f(xg)| > € for all n, we cannot have f(z,) — f(x¢)

Hence we found a sequence x,, — xo but f(z,) = f(x¢) v O
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2. f 4+ g IS CONTINUOUS

Video: |f + g is continuous

Now let’s prove some basic properties of continuous functions, such as
f + g is continuous or fg is continuous.

If f and g are continuous at g, then f + ¢ is continuous at x

Proof using Definition 1: Let x, be a sequence converging to x.
Then, since f is continuous at xy, we get f(z,) — f(zo) and, since g
is continuous at zy, we have g(x,) — g(zy). But, by the sum law for
limits of sequences (see section 9), we get:

(f +9)(@n) = flazn) + g(2a) = f(20) + g(x0) = (f + 9)(x0) vV
Hence f + g is continuous at z O
Note: Notice how the result about f + ¢ follows from the correspond-
ing result for sequences! This will be pretty much true for all our proofs
involving Definition 1.

Proof using Definition 2: (do not skip!)

Let € > 0 be given

Then, since f is continuous at xg, there is 9; > 0 such that if |z — z¢| <
o1, then |f(x) — f(z0)| < 5.


https://youtu.be/JUWqSqy9tAw
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And, since g is continuous at xg, there is do > 0 such that if |z — x¢| <
da, then |g(x) — g(z0)| < 5.

But then, if 6 = min {d;,d2} > 0, we get:
[(f +9)(x) = (f + 9)(@o)| =|f(x) + g(z) — (f(z0) + g(0))]

=[f(x) = f(z0) + g(x) — g(0)|
<|f(x) = f(@o)| + |g(z) — g(x0)|
€ €
<§ + §
=ev’
Hence f 4+ g is continuous at x ]

3. kf 1S CONTINUOUS
As a tribute to K F'C, let’s prove that:

If f is continuous at x(, and k is a real number, then kf is con-
tinuous at x

Proof using Definition 1: If (z,) is a sequence that converges to z,
then, since f is continuous at xg, f(x,) — f(z¢), and therefore

(Ef)(@n) =k (f(2n)) = K (f(20)) = (Kf)(w0) vV

And therefore kf is continuous at x O]

Proof using Definition 2: First of all, we may assume k # 0, be-
cause otherwise kf = 0, which is continuous.

Let € > 0, then, since f is continuous at x(, there is > 0 such that if

|z — 20| < 6, then |f(x) — f(z0)] < i (we use absolute values because
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k might be negative)

Then, with the same ¢, if |z — xo| < §, we get:

(kf) (@) — (k) (@0)| = [k () = kf(w0)] = k]| £ (@) — f(x0)] < |K] (w

Therefore kf is continuous at xg ]

Aside: If you've taken linear algebra, notice that Fact 1 says that con-
tinuous functions are closed under addition, and Fact 2 says that they
are closed under scalar multiplication. Therefore, the set of continuous
functions forms a vector space!

If f and g are continuous at z(, then f — g is continuous at x

Proof: Since g is continuous at x, using Fact 2 above with £ = —1,
we get —g = (—1)g is continuous at x.

Therefore, since f and —g are continuous at xy, by Fact 1, f —g =
f + (—g) is continuous at x =

4. |f| 1S CONTINUOUS

In this small interlude, let’s prove the following quick fact:

If f is continuous at xg, then |f| is continuous at x

) e
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Proof using Definition 1: Suppose z,, — x(, then, since f is con-
tinuous at xg, f(x,) = f(x), and therefore | f(z,)| = |f(x0)| v

Hence |f| is continuous at x O

Proof using Definition 2: Let ¢ > 0 be given. Then, since f
is continuous at xy, there is § > 0 such that if |z —x¢| < §, then

[f(x) = f(zo)] <

With that same 9, if |x — x| < §, then by the reverse triangle inequal-
ity, which says |a — b| > ||a|] — |||, we have:

Lf @) = [f @o)ll < [f(z) = flzo)] < ev

Therefore | f| is continuous at zg O

5. fg IS CONTINUOUS

Video: fg is continuous

Now let’s prove that the product of continuous functions is continuous:

If f and g are continuous at z(, then fg is continuous at x

Proof using Definition 1: Suppose z, — x3. Then, since f is
continuous at xy, we have f(z,) — f(zo), and, since g is continuous
at xg, we have g(z,) — g(x¢), and therefore, by the product law for
limits (section 9), we have

(f9)(wn) = (f(zn)) (9(xn)) = (f(20)) (9(20)) = (fg)(x0)v


https://youtu.be/dfaks-lnbjM
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Therefore fg is continuous at x ]
Proof using Definition 2:

STEP 1: Scratchwork

We need to estimate:

[f(@)g(x) = f(z0)g(x0)]

[f(@)g (@)= f(x)g(x0) + f(x)g(w0) — f(20)g(20)]
[f(x) (9(x) = g(w0)) + g(x0) (f (x) — f(z0))]
[F (@) g () = g(zo)| + |g(xo)| 1/ () = f(z0)]

The |f(x) — f(xo)| and |g(x) — g(xo)| terms are good, since f and g
are continuous at xg. Moreover, the |g(zo)| term is good since it is
constant.

IA

The only bad term is | f(x)| since it depends on . For this, use the fact
that, since f is continuous, f(x) is close to f(z() (which is constant)

Since f is continuous with € = 1, we get that there is 9; > 0 such that
if |x — xg| < 91, then |f(z) — f(x0)] < 1, but then

[f(@)| = [f(x) = flxo) + f(xo)| < [f(x) = f(o)|+[f(wo)| < 1+]|f (o)l

Therefore, going back to our original inequality, we get:

[f(x)g(x) = fzo)g(xo)l <[f(@)lg(x) = g(xo)| + |g(xo)| [f(x) — f(w0)]
<(|f(zo)| + 1) lg(x) = g(@o)| + |g(@o)| | f(x) — f(zo)]

We are finally ready for our actual proof:

STEP 2: Actual Proof:
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Let € > 0 be given

Then, since f is continuous at xg, there is 9; > 0 such that if |z — (| <

1, then |f(x) — f(xo)|] < 1, and therefore |f(z)| < |f(xo)| + 1 (as be-
fore)

Now since g is continuous at xg, there is d, > 0 such that if |z — x¢| <
02, then [g(x) — g(@0)| < 77707

(the factor 2 is there because we have 2 terms)

Finally, since f is continuous at z(, there is d3 > 0 such that if

[ — | < 8, then | f(2) = f(20)] < 057D

(we can’t just divide by |g(z¢)| since g(z() might be 0)

Let 6 = min {61, 2,93} > 0, then if | — 2| < §, then we get:

(Fg)(x) = (fg)(@o)| =[f(z)g(x) — f(z0)g(x0)]
< (If (o)l + 1) [g(x) — glzo)| + [g(zo)| [ f(x) — f(0)]

< W gy + oo ()
5 (et 1) )

pA
<e N €
2 2
=ev

Therefore fg is continuous at x ]
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6. 5 IS CONTINUOUS

Video: g is continuous

In this section, we prove that quotients § of continuous functions are
continuous. For this, we need to first show that reciprocals % of con-
tinuous functions are continuous.

If f#0and f is continuous at xy, then % is continuous at z

Proof using Definition 1: If z,, is a sequence converging to xg, then,
since f is continuous at xg, f(z,) — f(x). By assumption f(x,) # 0
for all n and f(x) # 0, so, by the results in section 9, f(;: 7 — f(io) v

Therefore % is continuous at x. ]

Proof using Definition 2:
STEP 1: Scratchwork

This time we need to estimate

‘ 1 :‘f(fl?o)—f(x) _ f(@) = flxo)]
flx)  flxo) f (@) f (o) |f (@) [f (o)]
The |f(z) — f(xg)| term is good, and the |f(xg)| term is good as well

The only term we need to control is the |f(z)| term.


https://youtu.be/1EhmKFUA4bI
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Note: Since we want ﬁ < something, we need |f(x)| > something!

Here we can’t use the trick with |f(x) — f(x¢)| < 1, because here it
depends on where z; is located (this will be clearer below)

That’s why we need a more subtle estimate:

Since f is continuous at xzy, with € = / (;:o)\ > (), there is 07 such that if

& — wo| < 81, then | f(z) — f(xo)| < Ll

01

«—>

(xo) —

~ {x) |f(Xo)|

X Xpo

(In the picture above, notice that in the red region, f(z) is above L&l <§°)|)
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But then, since we need |f(x)| > something, using the reverse triangle
inequality, we get

|f (o)
2

| f(0)]
2

Lf (@) = [f@o)ll < |f(x) = flzo)| <

Therefore

. |f (o)
2

<[f(@)] = [f(zo)] < —

And therefore

[f(zo)| _ [ f(z0)]

= >0
2 2

[f(@)] > [f (wo)| =

(THIS step would have failed if we chose 1 instead of o)l e

2
wouldn’t get something positive)

12
[f(@)] [ f (o)l

Hence, going back to our original identity, we get

Hence

(GOOD)

‘1 R :If(af)—f(xo)\<\f(56)—f(ﬂso)|< 2 )

7@ T T @) = @) \IFe
=|f(w)—f(9:o)\< 2 )<

|f(5’30)\

Which gives | f(z) — f(z0)| < & | f(z0)[
STEP 2: Actual Proof

Let € > 0 be given
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Then, since f is continuous at xg, there is 4; > 0 such that if |z — x¢| <
o1, then |f(z) — f(xo)| < M, which implies |f(z)| > @, and
therefore ey < iy

Moreover, since f is continuous at x(, there is do > 0 such that if
& — | < &, then [f(x) — f(0)| < §|f(z0)[’

Let 6 = min {61, 2} > 0, then, if |z — x| < 9, then

‘1 | 1) Sl

71~ | I G 2
S(Vﬁkﬁﬁwo<uwm>
—1f () - <>( ’ )
(457 ()

Hence % is continuous at x O

If f and g are continuous at xy with g # 0, then then g is contin-
uous at xg

Proof: Since ¢ is continuous at zy and g # 0, by the above, é is con-

tinuous at x(, and therefore, by the product law (Fact 4), § =f (é)

is continuous at x
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7. CHEN LU IS CONTINUOUS

Video: g o f is continuous

If A,B,C are subsets of Rand f: A— Band g: B — C are
functions, then the composition go f : A — C' is defined by

(g0 f)(x) = g(f(x))

gof
(Direct Flight)

Analogy: If you think of f as a layover from A to B and ¢ as a layover
from B to C, then g o f is a direct flight from A to C'


https://youtu.be/W5DyrnbDnD8
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If f is continuous at zy and ¢ is continuous at f(xzg), then go f
is continuous at x

Proof using Definition 1: Suppose (z,,) is a sequence that converges
to xg. Then, since f is continuous at zy, we have f(z,) — f(z¢), but
now, since ¢ is continuous at f(x), we have g(f(z,)) — g(f(x)), that

is (go f)(zn) = (go f)(xg) v
And therefore g o f is continuous at xg ]

Proof using Definition 2: Let ¢ > 0 be given.

Since g is continuous at f(xg), there is 6’ > 0 such that
|z = f(zo)| < 0" = |g(x) — g(f(w0))| <€
Since “f(x)” is more specific than “z”, this implies that for all z,

[ () = fl@o)| < &= [g(f(x)) — g(f(x0))| <€

Since f is continuous at g, by € — d with ¢’ instead of €, there is 6 > 0
such that if |z — x| < 6, then |f(z) — f(xo)| <

So with § as above, for all z, if |z — 2| < 0, then |f(z) — f(z0)] < ¢
and therefore

(g o f)(x) = (g0 f)(wo)| = lg(f(x)) — g(f(x0))| < ev

Therefore g o f is continuous at xg [l

Intuitively: We need g(f(x)) to be in the good region (in blue on
the right), this can be achieved by making f(z) close to f(xy) (purple
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region on the right) since ¢ is continuous, and this, in turn, can be
achieved by making z close to xy (red region on the left) since f is

continuous.

f(xo) | |8 ED) Je

f(x) g(t(x))
f(x)

Xo X 1(x) 1(x0)

—~

8. max(f,g) IS CONTINUOUS

Video: max is continuous

Finally, let’s show that the maximum of f and ¢ is continuous.


https://youtu.be/SnHD78LAVqQ
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fx)if f(x)

B > g
max(f, g)(z) = {g(;p) if g(z) > f(x)

In other words, at each x, max(f, g) is just the bigger one of f(x) and
9(x)

If f and g are continuous at o, then max(f, g) is continuous at
20

The proof of this relies on the following explicit formula for max(f, g)

max(f,g) =

(f+m+%ﬁ—m

1
2
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Proof of Claim:
Case 1: f(x) > g(x)

Then max(f,g) = f(z), but also, since f(x) — g(z) > 0, we have

(z) — g(z)| = f(z) ~ g(z), and s0

% (f(z) + g(z)) + % |f(z) = g(z)] :% (f(z) +g(x)) + % (f(z) —g(x))
:% (f(x) +g(x) + f(x) — g(x))
=, (2/(®))
=f(x)V

Case 2: g(z) < f(x)

Similar, except you use |f(z) — g(z)| = g(z) — f(z) since f(zx)—g(z) <
0 here v/ ]

Proof of Fact: Since f and g are continuous at xy, f+ ¢ is continuous
at x9, and therefore £ (f + g) is continuous at .

But also f — g is continuous at xg, and therefore |f — g| is continuous
at xg, and hence % |f — g is continuous at x(, and therefore:

max(.9) = 3 (f +9) + 517 — 4l

1
2
is continuous at z( (as the sum of two continuous functions) L]

Remark: Similarly, you can define
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And similarly you can show

If f and g are continuous at x(, then min(f, g) is continuous at
To

Proof: See Homework for details, but you either show (similar to
above) that

minf.g) = 5 (f +9) ~ 517 — 4l

1
2
Or use that

min(f, g) = —max(—f,—g) O
(Compare this to inf(S) = —sup(—S) from Chapter 1)
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