
LECTURE 16: CONTINUOUS FUNCTIONS (II)

1. Sequential Vs. ϵ− δ Continuity

Video: Equivalent Definitions

Let’s show that the two definitions of continuity are equivalent:

Definition 1:

f is continuous at x0 if, whenever (xn) is a sequence that con-
verges to x0, then f(xn) converges to f(x0)

Definition 2:

f is continuous at x0 if for all ϵ > 0 there is δ > 0 such that, for
all x, if |x− x0| < δ, then |f(x)− f(x0)| < ϵ

Fact:

The two definitions are equivalent

Date: Thursday, October 21, 2021.
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https://youtu.be/aN5qICo2Dgk
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Proof: (Definition 2 ⇒ Definition 1)

Suppose the ϵ − δ definition holds, and let (xn) be a sequence that
converges to x0.

Goal: Show f(xn) converges to f(x0).

Let ϵ > 0 be given

Then, by ϵ− δ, there is δ > 0 such that for all x, if |x− x0| < δ, then
|f(x)− f(x0)| < ϵ (this is just ϵ− δ)

However, since xn → x0, by definition of the limit of sequences (but
with δ instead of ϵ) there is N such that if n > N , then |xn − x0| < δ

But since |xn − x0| < δ, by ϵ− δ, we have |f(xn)− f(x0)| < ϵ.
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So for all ϵ > 0, there isN such that if n > N , then |f(xn)− f(x0)| < ϵ,
so f(xn) → f(x0). ✓

Intuitively: If xn converges to x0, then eventually xn is in the red
zone where |x− x0| < δ, and therefore f(xn) is ϵ−close to f(x0), which
forces f(xn) to converge to f(x0)

Proof: (Definition 1 ⇒ Definition 2)

We will show (Not 2 ⇒ Not 1)

Suppose ϵ − δ definition fails, that is there is ϵ > 0 such that for all
δ > 0, there is x such that |x− x0| < δ but |f(x)− f(x0)| ≥ ϵ.
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The idea is simply to use the above definition but with δ = 1
n

With ϵ as above, for every n, with δ = 1
n , there is some xn such that

|xn − x0| < 1
n but |f(xn)− f(x0)| ≥ ϵ.

Since |xn − x0| < 1
n , we get xn → x0 by the Squeeze Theorem

But since |f(xn)− f(x0)| ≥ ϵ for all n, we cannot have f(xn) → f(x0)

Hence we found a sequence xn → x0 but f(xn) ↛ f(x0) ✓ □
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2. f + g is continuous

Video: f + g is continuous

Now let’s prove some basic properties of continuous functions, such as
f + g is continuous or fg is continuous.

Fact 1:

If f and g are continuous at x0, then f + g is continuous at x0

Proof using Definition 1: Let xn be a sequence converging to x0.
Then, since f is continuous at x0, we get f(xn) → f(x0) and, since g
is continuous at x0, we have g(xn) → g(x0). But, by the sum law for
limits of sequences (see section 9), we get:

(f + g)(xn) = f(xn) + g(xn) → f(x0) + g(x0) = (f + g)(x0)✓

Hence f + g is continuous at x0 □

Note: Notice how the result about f + g follows from the correspond-
ing result for sequences! This will be pretty much true for all our proofs
involving Definition 1.

Proof using Definition 2: (do not skip!)

Let ϵ > 0 be given

Then, since f is continuous at x0, there is δ1 > 0 such that if |x− x0| <
δ1, then |f(x)− f(x0)| < ϵ

2 .

https://youtu.be/JUWqSqy9tAw
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And, since g is continuous at x0, there is δ2 > 0 such that if |x− x0| <
δ2, then |g(x)− g(x0)| < ϵ

2 .

But then, if δ = min {δ1, δ2} > 0, we get:

|(f + g)(x)− (f + g)(x0)| = |f(x) + g(x)− (f(x0) + g(x0))|
= |f(x)− f(x0) + g(x)− g(x0)|
≤ |f(x)− f(x0)|+ |g(x)− g(x0)|

<
ϵ

2
+

ϵ

2
=ϵ✓

Hence f + g is continuous at x0 □

3. kf is continuous

As a tribute to KFC, let’s prove that:

Fact 2:

If f is continuous at x0, and k is a real number, then kf is con-
tinuous at x0

Proof using Definition 1: If (xn) is a sequence that converges to x0,
then, since f is continuous at x0, f(xn) → f(x0), and therefore

(kf)(xn) = k (f(xn)) → k (f(x0)) = (kf)(x0)✓

And therefore kf is continuous at x0 □

Proof using Definition 2: First of all, we may assume k ̸= 0, be-
cause otherwise kf = 0, which is continuous.

Let ϵ > 0, then, since f is continuous at x0, there is δ > 0 such that if
|x− x0| < δ, then |f(x)− f(x0)| < ϵ

|k| (we use absolute values because
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k might be negative)

Then, with the same δ, if |x− x0| < δ, we get:

|(kf)(x)− (kf)(x0)| = |kf(x)− kf(x0)| = |k| |f(x)− f(x0)| < |k|
(

ϵ

|k|

)
= ϵ✓

Therefore kf is continuous at x0 □

Aside: If you’ve taken linear algebra, notice that Fact 1 says that con-
tinuous functions are closed under addition, and Fact 2 says that they
are closed under scalar multiplication. Therefore, the set of continuous
functions forms a vector space!

Corollary:

If f and g are continuous at x0, then f − g is continuous at x0

Proof: Since g is continuous at x0, using Fact 2 above with k = −1,
we get −g = (−1)g is continuous at x0.

Therefore, since f and −g are continuous at x0, by Fact 1, f − g =
f + (−g) is continuous at x0 □

4. |f | is continuous

In this small interlude, let’s prove the following quick fact:

Fact 3:

If f is continuous at x0, then |f | is continuous at x0



8 LECTURE 16: CONTINUOUS FUNCTIONS (II)

Proof using Definition 1: Suppose xn → x0, then, since f is con-
tinuous at x0, f(xn) → f(x0), and therefore |f(xn)| → |f(x0)| ✓

Hence |f | is continuous at x0 □

Proof using Definition 2: Let ϵ > 0 be given. Then, since f
is continuous at x0, there is δ > 0 such that if |x− x0| < δ, then
|f(x)− f(x0)| < ϵ.

With that same δ, if |x− x0| < δ, then by the reverse triangle inequal-
ity, which says |a− b| ≥ ||a| − |b||, we have:

||f(x)| − |f(x0)|| ≤ |f(x)− f(x0)| < ϵ✓

Therefore |f | is continuous at x0 □

5. fg is continuous

Video: fg is continuous

Now let’s prove that the product of continuous functions is continuous:

Fact 4:

If f and g are continuous at x0, then fg is continuous at x0

Proof using Definition 1: Suppose xn → x0. Then, since f is
continuous at x0, we have f(xn) → f(x0), and, since g is continuous
at x0, we have g(xn) → g(x0), and therefore, by the product law for
limits (section 9), we have

(fg)(xn) = (f(xn)) (g(xn)) → (f(x0)) (g(x0)) = (fg)(x0)✓

https://youtu.be/dfaks-lnbjM
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Therefore fg is continuous at x0 □

Proof using Definition 2:

STEP 1: Scratchwork

We need to estimate:

|f(x)g(x)− f(x0)g(x0)| = |f(x)g(x)−f(x)g(x0) + f(x)g(x0)− f(x0)g(x0)|
= |f(x) (g(x)− g(x0)) + g(x0) (f(x)− f(x0))|
≤ |f(x)| |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|

The |f(x)− f(x0)| and |g(x)− g(x0)| terms are good, since f and g
are continuous at x0. Moreover, the |g(x0)| term is good since it is
constant.

The only bad term is |f(x)| since it depends on x. For this, use the fact
that, since f is continuous, f(x) is close to f(x0) (which is constant)

Since f is continuous with ϵ = 1, we get that there is δ1 > 0 such that
if |x− x0| < δ1, then |f(x)− f(x0)| < 1, but then

|f(x)| = |f(x)− f(x0) + f(x0)| ≤ |f(x)− f(x0)|+|f(x0)| < 1+|f(x0)|

Therefore, going back to our original inequality, we get:

|f(x)g(x)− f(x0)g(x0)| ≤|f(x)| |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|
≤(|f(x0)|+ 1) |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|

We are finally ready for our actual proof:

STEP 2: Actual Proof:
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Let ϵ > 0 be given

Then, since f is continuous at x0, there is δ1 > 0 such that if |x− x0| <
δ1, then |f(x)− f(x0)| < 1, and therefore |f(x)| ≤ |f(x0)| + 1 (as be-
fore)

Now since g is continuous at x0, there is δ2 > 0 such that if |x− x0| <
δ2, then |g(x)− g(x0)| < ϵ

2(|f(x0)|+1)

(the factor 2 is there because we have 2 terms)

Finally, since f is continuous at x0, there is δ3 > 0 such that if
|x− x0| < δ3, then |f(x)− f(x0)| < ϵ

2(|g(x0)|+1)

(we can’t just divide by |g(x0)| since g(x0) might be 0)

Let δ = min {δ1, δ2, δ3} > 0, then if |x− x0| < δ, then we get:

|(fg)(x)− (fg)(x0)| = |f(x)g(x)− f(x0)g(x0)|
≤ (|f(x0)|+ 1) |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|

<
(
�������|f(x0)|+ 1

)( ϵ

2((((((((
(|f(x0)|+ 1)

)
+ |g(x0)|

(
ϵ

2 (|g(x0)|+ 1)

)
=
ϵ

2
+

(
|g(x0)|

|g(x0)|+ 1

)
︸ ︷︷ ︸

<1

( ϵ
2

)

<
ϵ

2
+

ϵ

2
=ϵ✓

Therefore fg is continuous at x0 □
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6.
f
g is continuous

Video: f
g is continuous

In this section, we prove that quotients f
g of continuous functions are

continuous. For this, we need to first show that reciprocals 1
f of con-

tinuous functions are continuous.

Fact 5:

If f ̸= 0 and f is continuous at x0, then
1
f is continuous at x0

Proof using Definition 1: If xn is a sequence converging to x0, then,
since f is continuous at x0, f(xn) → f(x). By assumption f(xn) ̸= 0
for all n and f(x) ̸= 0, so, by the results in section 9, 1

f(xn)
→ 1

f(x0)
✓

Therefore 1
f is continuous at x0. □

Proof using Definition 2:

STEP 1: Scratchwork

This time we need to estimate∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ = ∣∣∣∣f(x0)− f(x)

f(x)f(x0)

∣∣∣∣ = |f(x)− f(x0)|
|f(x)| |f(x0)|

The |f(x)− f(x0)| term is good, and the |f(x0)| term is good as well

The only term we need to control is the |f(x)| term.

https://youtu.be/1EhmKFUA4bI
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Note: Since we want 1
|f(x)| < something, we need |f(x)| > something!

Here we can’t use the trick with |f(x)− f(x0)| < 1, because here it
depends on where x0 is located (this will be clearer below)

That’s why we need a more subtle estimate:

Since f is continuous at x0, with ϵ = |f(x0)|
2 > 0, there is δ1 such that if

|x− x0| < δ1, then |f(x)− f(x0)| < |f(x0)|
2

(In the picture above, notice that in the red region, f(x) is above |f(x0)|
2 )
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But then, since we need |f(x)| ≥ something, using the reverse triangle
inequality, we get

||f(x)| − |f(x0)|| ≤ |f(x)− f(x0)| <
|f(x0)|

2

Therefore

−|f(x0)|
2

< |f(x)| − |f(x0)| < −|f(x0)|
2

And therefore

|f(x)| > |f(x0)| −
|f(x0)|

2
=

|f(x0)|
2

> 0

(THIS step would have failed if we chose 1 instead of |f(x0)|
2 , we

wouldn’t get something positive)

Hence
1

|f(x)|
<

2

|f(x0)|
(GOOD)

Hence, going back to our original identity, we get

∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ = |f(x)− f(x0)|
|f(x)| |f(x0)|

≤ |f(x)− f(x0)|
|f(x0)|

(
2

|f(x0)|

)
= |f(x)− f(x0)|

(
2

|f(x0)|2

)
?
< ϵ

Which gives |f(x)− f(x0)| < ϵ
2 |f(x0)|

2

STEP 2: Actual Proof

Let ϵ > 0 be given
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Then, since f is continuous at x0, there is δ1 > 0 such that if |x− x0| <
δ1, then |f(x)− f(x0)| < |f(x0)|

2 , which implies |f(x)| > |f(x0)|
2 , and

therefore 1
|f(x)| <

2
|f(x0)|

Moreover, since f is continuous at x0, there is δ2 > 0 such that if
|x− x0| < δ2, then |f(x)− f(x0)| < ϵ

2 |f(x0)|
2

Let δ = min {δ1, δ2} > 0, then, if |x− x0| < δ, then∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ =|f(x)− f(x0)|
|f(x)| |f(x0)|

≤
(
|f(x)− f(x0)|

|f(x0)|

)(
2

|f(x0)|

)
= |f(x)− f(x0)|

(
2

|f(x0)|2

)
<

(
ϵ�����|f(x0)|2

��2

)
�

���
����

(
2

|f(x0)|2

)
=ϵ✓

Hence 1
f is continuous at x0 □

Corollary:

If f and g are continuous at x0 with g ̸= 0, then then f
g is contin-

uous at x0

Proof: Since g is continuous at x0 and g ̸= 0, by the above, 1
g is con-

tinuous at x0, and therefore, by the product law (Fact 4), f
g = f

(
1
g

)
is continuous at x0 □



LECTURE 16: CONTINUOUS FUNCTIONS (II) 15

7. Chen Lu is continuous

Video: g ◦ f is continuous

Definition:

If A,B,C are subsets of R and f : A → B and g : B → C are
functions, then the composition g ◦ f : A → C is defined by

(g ◦ f)(x) = g(f(x))

Analogy: If you think of f as a layover from A to B and g as a layover
from B to C, then g ◦ f is a direct flight from A to C

https://youtu.be/W5DyrnbDnD8
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Fact 6:

If f is continuous at x0 and g is continuous at f(x0), then g ◦ f
is continuous at x0

Proof using Definition 1: Suppose (xn) is a sequence that converges
to x0. Then, since f is continuous at x0, we have f(xn) → f(x0), but
now, since g is continuous at f(x0), we have g(f(xn)) → g(f(x0)), that
is (g ◦ f)(xn) → (g ◦ f)(x0) ✓

And therefore g ◦ f is continuous at x0 □

Proof using Definition 2: Let ϵ > 0 be given.

Since g is continuous at f(x0), there is δ′ > 0 such that

|x− f(x0)| < δ′ ⇒ |g(x)− g(f(x0))| < ϵ

Since “f(x)” is more specific than “x”, this implies that for all x,

|f(x)− f(x0)| < δ′ ⇒ |g(f(x))− g(f(x0))| < ϵ

Since f is continuous at x0, by ϵ− δ with δ′ instead of ϵ, there is δ > 0
such that if |x− x0| < δ, then |f(x)− f(x0)| < δ′

So with δ as above, for all x, if |x− x0| < δ, then |f(x)− f(x0)| < δ′

and therefore

|(g ◦ f)(x)− (g ◦ f)(x0)| = |g(f(x))− g(f(x0))| < ϵ✓

Therefore g ◦ f is continuous at x0 □

Intuitively: We need g(f(x)) to be in the good region (in blue on
the right), this can be achieved by making f(x) close to f(x0) (purple
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region on the right) since g is continuous, and this, in turn, can be
achieved by making x close to x0 (red region on the left) since f is
continuous.

8. max(f, g) is continuous

Video: max is continuous

Finally, let’s show that the maximum of f and g is continuous.

https://youtu.be/SnHD78LAVqQ
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Definition:

max(f, g)(x) =

{
f(x) if f(x) ≥ g(x)

g(x) if g(x) ≥ f(x)

In other words, at each x, max(f, g) is just the bigger one of f(x) and
g(x)

Fact 7:

If f and g are continuous at x0, then max(f, g) is continuous at
x0

The proof of this relies on the following explicit formula for max(f, g)

Claim:

max(f, g) =
1

2
(f + g) +

1

2
|f − g|
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Proof of Claim:

Case 1: f(x) ≥ g(x)

Then max(f, g) = f(x), but also, since f(x) − g(x) ≥ 0, we have
|f(x)− g(x)| = f(x)− g(x), and so

1

2
(f(x) + g(x)) +

1

2
|f(x)− g(x)| =1

2
(f(x) + g(x)) +

1

2
(f(x)− g(x))

=
1

2
(f(x) + g(x) + f(x)− g(x))

=
1

2
(2f(x))

=f(x)✓

Case 2: g(x) ≤ f(x)

Similar, except you use |f(x)− g(x)| = g(x)−f(x) since f(x)−g(x) ≤
0 here ✓ □

Proof of Fact: Since f and g are continuous at x0, f+g is continuous
at x0, and therefore 1

2 (f + g) is continuous at x0.

But also f − g is continuous at x0, and therefore |f − g| is continuous
at x0, and hence 1

2 |f − g| is continuous at x0, and therefore:

max(f, g) =
1

2
(f + g) +

1

2
|f − g|

is continuous at x0 (as the sum of two continuous functions) □

Remark: Similarly, you can define
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Definition:

min(f, g)(x) =

{
f(x) if f(x) ≤ g(x)

g(x) if g(x) ≤ f(x)

And similarly you can show

Fact:

If f and g are continuous at x0, then min(f, g) is continuous at
x0

Proof: See Homework for details, but you either show (similar to
above) that

min(f, g) =
1

2
(f + g)− 1

2
|f − g|

Or use that

min(f, g) = −max(−f,−g) □

(Compare this to inf(S) = − sup(−S) from Chapter 1)
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