LECTURE 16: CONTINUOUS FUNCTIONS (II)

1. Sequential Vs. $\epsilon - \delta$ Continuity

Video: Equivalent Definitions

Let's show that the two definitions of continuity are equivalent:

Definition 1:

f is continuous at x_0 if, whenever (x_n) is a sequence that converges to x_0 , then $f(x_n)$ converges to $f(x_0)$

Definition 2:

f is **continuous** at x_0 if for all $\epsilon > 0$ there is $\delta > 0$ such that, for all x, if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$

Fact:

The two definitions are equivalent

Date: Thursday, October 21, 2021.

Proof: (Definition $2 \Rightarrow$ Definition 1)

Suppose the $\epsilon - \delta$ definition holds, and let (x_n) be a sequence that converges to x_0 .

Goal: Show $f(x_n)$ converges to $f(x_0)$.

Let $\epsilon > 0$ be given

Then, by $\epsilon - \delta$, there is $\delta > 0$ such that for all x, if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$ (this is just $\epsilon - \delta$)

However, since $x_n \to x_0$, by definition of the limit of sequences (but with δ instead of ϵ) there is N such that if n > N, then $|x_n - x_0| < \delta$

But since $|x_n - x_0| < \delta$, by $\epsilon - \delta$, we have $|f(x_n) - f(x_0)| < \epsilon$.

So for all $\epsilon > 0$, there is N such that if n > N, then $|f(x_n) - f(x_0)| < \epsilon$, so $f(x_n) \to f(x_0)$.

Intuitively: If x_n converges to x_0 , then eventually x_n is in the red zone where $|x - x_0| < \delta$, and therefore $f(x_n)$ is ϵ -close to $f(x_0)$, which forces $f(x_n)$ to converge to $f(x_0)$

Proof: (Definition $1 \Rightarrow$ Definition 2)

We will show (Not $2 \Rightarrow Not 1$)

Suppose $\epsilon - \delta$ definition fails, that is there is $\epsilon > 0$ such that for all $\delta > 0$, there is x such that $|x - x_0| < \delta$ but $|f(x) - f(x_0)| \ge \epsilon$.

The idea is simply to use the above definition but with $\delta = \frac{1}{n}$

With ϵ as above, for every n, with $\delta = \frac{1}{n}$, there is some x_n such that $|x_n - x_0| < \frac{1}{n}$ but $|f(x_n) - f(x_0)| \ge \epsilon$.

Since $|x_n - x_0| < \frac{1}{n}$, we get $x_n \to x_0$ by the Squeeze Theorem But since $|f(x_n) - f(x_0)| \ge \epsilon$ for all n, we cannot have $f(x_n) \to f(x_0)$ Hence we found a sequence $x_n \to x_0$ but $f(x_n) \nrightarrow f(x_0) \checkmark$

2. f + g is continuous

Video: f + g is continuous

Now let's prove some basic properties of continuous functions, such as f + g is continuous or fg is continuous.

Fact 1:

If f and g are continuous at x_0 , then f + g is continuous at x_0

Proof using Definition 1: Let x_n be a sequence converging to x_0 . Then, since f is continuous at x_0 , we get $f(x_n) \to f(x_0)$ and, since g is continuous at x_0 , we have $g(x_n) \to g(x_0)$. But, by the sum law for limits of sequences (see section 9), we get:

$$(f+g)(x_n) = f(x_n) + g(x_n) \to f(x_0) + g(x_0) = (f+g)(x_0)\checkmark$$

Hence f + g is continuous at x_0

Note: Notice how the result about f + g follows from the corresponding result for sequences! This will be pretty much true for all our proofs involving Definition 1.

Proof using Definition 2: (do not skip!)

Let $\epsilon > 0$ be given

Then, since f is continuous at x_0 , there is $\delta_1 > 0$ such that if $|x - x_0| < \delta_1$, then $|f(x) - f(x_0)| < \frac{\epsilon}{2}$.

And, since g is continuous at x_0 , there is $\delta_2 > 0$ such that if $|x - x_0| < \delta_2$, then $|g(x) - g(x_0)| < \frac{\epsilon}{2}$.

But then, if $\delta = \min \{\delta_1, \delta_2\} > 0$, we get: $|(f+g)(x) - (f+g)(x_0)| = |f(x) + g(x) - (f(x_0) + g(x_0))|$ $= |f(x) - f(x_0) + g(x) - g(x_0)|$ $\leq |f(x) - f(x_0)| + |g(x) - g(x_0)|$ $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$ $= \epsilon \checkmark$

Hence f + g is continuous at x_0

3. kf is continuous

As a tribute to KFC, let's prove that:

Fact 2:

If f is continuous at x_0 , and k is a real number, then kf is continuous at x_0

Proof using Definition 1: If (x_n) is a sequence that converges to x_0 , then, since f is continuous at x_0 , $f(x_n) \to f(x_0)$, and therefore

$$(kf)(x_n) = k\left(f(x_n)\right) \to k\left(f(x_0)\right) = (kf)(x_0)\checkmark$$

And therefore kf is continuous at x_0

Proof using Definition 2: First of all, we may assume $k \neq 0$, because otherwise kf = 0, which is continuous.

Let $\epsilon > 0$, then, since f is continuous at x_0 , there is $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \frac{\epsilon}{|k|}$ (we use absolute values because

 \square

k might be negative)

Then, with the same δ , if $|x - x_0| < \delta$, we get:

$$|(kf)(x) - (kf)(x_0)| = |kf(x) - kf(x_0)| = |k| |f(x) - f(x_0)| < |k| \left(\frac{\epsilon}{|k|}\right) = \epsilon \checkmark$$

Therefore kf is continuous at x_0

Aside: If you've taken linear algebra, notice that Fact 1 says that continuous functions are closed under addition, and Fact 2 says that they are closed under scalar multiplication. Therefore, the set of continuous functions forms a vector space!

Corollary:

If f and g are continuous at x_0 , then f - g is continuous at x_0

Proof: Since g is continuous at x_0 , using Fact 2 above with k = -1, we get -g = (-1)g is continuous at x_0 .

Therefore, since f and -g are continuous at x_0 , by Fact 1, f - g = f + (-g) is continuous at x_0

4. |f| is continuous

In this small interlude, let's prove the following quick fact:

Fact 3:

If f is continuous at x_0 , then |f| is continuous at x_0

Proof using Definition 1: Suppose $x_n \to x_0$, then, since f is continuous at $x_0, f(x_n) \to f(x_0)$, and therefore $|f(x_n)| \to |f(x_0)| \checkmark$

Hence |f| is continuous at x_0

Proof using Definition 2: Let $\epsilon > 0$ be given. Then, since f is continuous at x_0 , there is $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$.

With that same δ , if $|x - x_0| < \delta$, then by the reverse triangle inequality, which says $|a - b| \ge ||a| - |b||$, we have:

$$||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)| < \epsilon \checkmark$$

Therefore |f| is continuous at x_0

5. fg is continuous

Video: fg is continuous

Now let's prove that the product of continuous functions is continuous:

Fact 4:

If f and g are continuous at x_0 , then fg is continuous at x_0

Proof using Definition 1: Suppose $x_n \to x_0$. Then, since f is continuous at x_0 , we have $f(x_n) \to f(x_0)$, and, since g is continuous at x_0 , we have $g(x_n) \to g(x_0)$, and therefore, by the product law for limits (section 9), we have

$$(fg)(x_n) = (f(x_n)) (g(x_n)) \to (f(x_0)) (g(x_0)) = (fg)(x_0)\checkmark$$

Therefore fg is continuous at x_0

Proof using Definition 2:

STEP 1: Scratchwork

We need to estimate:

$$\begin{aligned} |f(x)g(x) - f(x_0)g(x_0)| &= |f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)| \\ &= |f(x) (g(x) - g(x_0)) + g(x_0) (f(x) - f(x_0))| \\ &\leq |f(x)| |g(x) - g(x_0)| + |g(x_0)| |f(x) - f(x_0)| \end{aligned}$$

The $|f(x) - f(x_0)|$ and $|g(x) - g(x_0)|$ terms are good, since f and g are continuous at x_0 . Moreover, the $|g(x_0)|$ term is good since it is constant.

The only bad term is |f(x)| since it depends on x. For this, use the fact that, since f is continuous, f(x) is close to $f(x_0)$ (which is constant)

Since f is continuous with $\epsilon = 1$, we get that there is $\delta_1 > 0$ such that if $|x - x_0| < \delta_1$, then $|f(x) - f(x_0)| < 1$, but then

$$|f(x)| = |f(x) - f(x_0) + f(x_0)| \le |f(x) - f(x_0)| + |f(x_0)| < 1 + |f(x_0)|$$

Therefore, going back to our original inequality, we get:

$$\begin{aligned} |f(x)g(x) - f(x_0)g(x_0)| &\leq |f(x)| |g(x) - g(x_0)| + |g(x_0)| |f(x) - f(x_0)| \\ &\leq (|f(x_0)| + 1) |g(x) - g(x_0)| + |g(x_0)| |f(x) - f(x_0)| \end{aligned}$$

We are finally ready for our actual proof:

STEP 2: Actual Proof:

Let $\epsilon > 0$ be given

Then, since f is continuous at x_0 , there is $\delta_1 > 0$ such that if $|x - x_0| < \delta_1$, then $|f(x) - f(x_0)| < 1$, and therefore $|f(x)| \le |f(x_0)| + 1$ (as before)

Now since g is continuous at x_0 , there is $\delta_2 > 0$ such that if $|x - x_0| < \delta_2$, then $|g(x) - g(x_0)| < \frac{\epsilon}{2(|f(x_0)|+1)}$

(the factor 2 is there because we have 2 terms)

Finally, since f is continuous at x_0 , there is $\delta_3 > 0$ such that if $|x - x_0| < \delta_3$, then $|f(x) - f(x_0)| < \frac{\epsilon}{2(|g(x_0)|+1)}$

(we can't just divide by $|g(x_0)|$ since $g(x_0)$ might be 0)

Let $\delta = \min \{\delta_1, \delta_2, \delta_3\} > 0$, then if $|x - x_0| < \delta$, then we get:

$$\begin{aligned} |(fg)(x) - (fg)(x_0)| &= |f(x)g(x) - f(x_0)g(x_0)| \\ &\leq (|f(x_0)| + 1) |g(x) - g(x_0)| + |g(x_0)| |f(x) - f(x_0)| \\ &< (|f(x_0)| + 1) \left(\frac{\epsilon}{2(|f(x_0)| + 1)}\right) + |g(x_0)| \left(\frac{\epsilon}{2(|g(x_0)| + 1)}\right) \\ &= \frac{\epsilon}{2} + \underbrace{\left(\frac{|g(x_0)|}{|g(x_0)| + 1}\right)}_{<1} \left(\frac{\epsilon}{2}\right) \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon \checkmark \end{aligned}$$

Therefore fg is continuous at x_0

6. $\frac{f}{g}$ IS CONTINUOUS

Video: $\frac{f}{g}$ is continuous

In this section, we prove that quotients $\frac{f}{g}$ of continuous functions are continuous. For this, we need to first show that reciprocals $\frac{1}{f}$ of continuous functions are continuous.

Fact 5:

If $f \neq 0$ and f is continuous at x_0 , then $\frac{1}{f}$ is continuous at x_0

Proof using Definition 1: If x_n is a sequence converging to x_0 , then, since f is continuous at x_0 , $f(x_n) \to f(x)$. By assumption $f(x_n) \neq 0$ for all n and $f(x) \neq 0$, so, by the results in section 9, $\frac{1}{f(x_n)} \to \frac{1}{f(x_0)} \checkmark$

Therefore $\frac{1}{f}$ is continuous at x_0 .

Proof using Definition 2:

STEP 1: Scratchwork

This time we need to estimate

$$\left|\frac{1}{f(x)} - \frac{1}{f(x_0)}\right| = \left|\frac{f(x_0) - f(x)}{f(x)f(x_0)}\right| = \frac{|f(x) - f(x_0)|}{|f(x)| |f(x_0)|}$$

The $|f(x) - f(x_0)|$ term is good, and the $|f(x_0)|$ term is good as well

The only term we need to control is the |f(x)| term.

Note: Since we want $\frac{1}{|f(x)|}$ < something, we need |f(x)| > something! Here we can't use the trick with $|f(x) - f(x_0)| < 1$, because here it depends on where x_0 is located (this will be clearer below)

That's why we need a more subtle estimate:

Since f is continuous at x_0 , with $\epsilon = \frac{|f(x_0)|}{2} > 0$, there is δ_1 such that if $|x - x_0| < \delta_1$, then $|f(x) - f(x_0)| < \frac{|f(x_0)|}{2}$

(In the picture above, notice that in the red region, f(x) is above $\frac{|f(x_0)|}{2}$)

But then, since we need $|f(x)| \ge$ something, using the *reverse* triangle inequality, we get

$$||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)| < \frac{|f(x_0)|}{2}$$

Therefore

$$-\frac{|f(x_0)|}{2} < |f(x)| - |f(x_0)| < -\frac{|f(x_0)|}{2}$$

And therefore

$$|f(x)| > |f(x_0)| - \frac{|f(x_0)|}{2} = \frac{|f(x_0)|}{2} > 0$$

(**THIS** step would have failed if we chose 1 instead of $\frac{|f(x_0)|}{2}$, we wouldn't get something positive)

Hence
$$\frac{1}{|f(x)|} < \frac{2}{|f(x_0)|}$$
 (GOOD)

Hence, going back to our original identity, we get

$$\left|\frac{1}{f(x)} - \frac{1}{f(x_0)}\right| = \frac{|f(x) - f(x_0)|}{|f(x)| |f(x_0)|} \le \frac{|f(x) - f(x_0)|}{|f(x_0)|} \left(\frac{2}{|f(x_0)|}\right)$$
$$= |f(x) - f(x_0)| \left(\frac{2}{|f(x_0)|^2}\right) \stackrel{?}{<} \epsilon$$

Which gives $|f(x) - f(x_0)| < \frac{\epsilon}{2} |f(x_0)|^2$

STEP 2: Actual Proof

Let $\epsilon > 0$ be given

Then, since f is continuous at x_0 , there is $\delta_1 > 0$ such that if $|x - x_0| < \delta_1$, then $|f(x) - f(x_0)| < \frac{|f(x_0)|}{2}$, which implies $|f(x)| > \frac{|f(x_0)|}{2}$, and therefore $\frac{1}{|f(x)|} < \frac{2}{|f(x_0)|}$

Moreover, since f is continuous at x_0 , there is $\delta_2 > 0$ such that if $|x - x_0| < \delta_2$, then $|f(x) - f(x_0)| < \frac{\epsilon}{2} |f(x_0)|^2$

Let $\delta = \min \{\delta_1, \delta_2\} > 0$, then, if $|x - x_0| < \delta$, then

$$\left|\frac{1}{f(x)} - \frac{1}{f(x_0)}\right| = \frac{|f(x) - f(x_0)|}{|f(x)| |f(x_0)|}$$

$$\leq \left(\frac{|f(x) - f(x_0)|}{|f(x_0)|}\right) \left(\frac{2}{|f(x_0)|}\right)$$

$$= |f(x) - f(x_0)| \left(\frac{2}{|f(x_0)|^2}\right)$$

$$< \left(\frac{\epsilon |f(x_0)|^2}{2}\right) \left(\frac{2}{|f(x_0)|^2}\right)$$

$$= \epsilon \checkmark$$

Hence $\frac{1}{f}$ is continuous at x_0

Corollary:

If f and g are continuous at x_0 with $g \neq 0$, then then $\frac{f}{g}$ is continuous at x_0

Proof: Since g is continuous at x_0 and $g \neq 0$, by the above, $\frac{1}{g}$ is continuous at x_0 , and therefore, by the product law (Fact 4), $\frac{f}{g} = f\left(\frac{1}{g}\right)$ is continuous at x_0

7. Chen Lu is continuous

Video: $g \circ f$ is continuous

Definition:

If A, B, C are subsets of \mathbb{R} and $f : A \to B$ and $g : B \to C$ are functions, then the **composition** $g \circ f : A \to C$ is defined by

$$(g \circ f)(x) = g(f(x))$$

Analogy: If you think of f as a layover from A to B and g as a layover from B to C, then $g \circ f$ is a direct flight from A to C

Fact 6:

If f is continuous at x_0 and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0

Proof using Definition 1: Suppose (x_n) is a sequence that converges to x_0 . Then, since f is continuous at x_0 , we have $f(x_n) \to f(x_0)$, but now, since g is continuous at $f(x_0)$, we have $g(f(x_n)) \to g(f(x_0))$, that is $(g \circ f)(x_n) \to (g \circ f)(x_0) \checkmark$

And therefore $g \circ f$ is continuous at x_0

Proof using Definition 2: Let $\epsilon > 0$ be given.

Since g is continuous at $f(x_0)$, there is $\delta' > 0$ such that

 $|x - f(x_0)| < \delta' \Rightarrow |g(x) - g(f(x_0))| < \epsilon$

Since "f(x)" is more specific than "x", this implies that for all x,

 $|f(x) - f(x_0)| < \delta' \Rightarrow |g(f(x)) - g(f(x_0))| < \epsilon$

Since f is continuous at x_0 , by $\epsilon - \delta$ with δ' instead of ϵ , there is $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \delta'$

So with δ as above, for all x, if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \delta'$ and therefore

$$|(g \circ f)(x) - (g \circ f)(x_0)| = |g(f(x)) - g(f(x_0))| < \epsilon \checkmark$$

Therefore $g \circ f$ is continuous at x_0

Intuitively: We need g(f(x)) to be in the good region (in blue on the right), this can be achieved by making f(x) close to $f(x_0)$ (purple

region on the right) since g is continuous, and this, in turn, can be achieved by making x close to x_0 (red region on the left) since f is continuous.

8. $\max(f,g)$ is continuous

Video: max is continuous

Finally, let's show that the maximum of f and g is continuous.

In other words, at each x, $\max(f, g)$ is just the bigger one of f(x) and g(x)

Fact 7:

If f and g are continuous at x_0 , then $\max(f, g)$ is continuous at x_0

The proof of this relies on the following explicit formula for $\max(f,g)$

Claim:

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

Proof of Claim:

Case 1: $f(x) \ge g(x)$

Then $\max(f,g) = f(x)$, but also, since $f(x) - g(x) \ge 0$, we have |f(x) - g(x)| = f(x) - g(x), and so

$$\begin{aligned} \frac{1}{2} \left(f(x) + g(x) \right) + \frac{1}{2} \left| f(x) - g(x) \right| &= \frac{1}{2} \left(f(x) + g(x) \right) + \frac{1}{2} \left(f(x) - g(x) \right) \\ &= \frac{1}{2} \left(f(x) + g(x) + f(x) - g(x) \right) \\ &= \frac{1}{2} \left(2f(x) \right) \\ &= f(x) \checkmark \end{aligned}$$

Case 2: $g(x) \leq f(x)$

Similar, except you use |f(x) - g(x)| = g(x) - f(x) since $f(x) - g(x) \leq 0$ here \checkmark

Proof of Fact: Since f and g are continuous at x_0 , f+g is continuous at x_0 , and therefore $\frac{1}{2}(f+g)$ is continuous at x_0 .

But also f - g is continuous at x_0 , and therefore |f - g| is continuous at x_0 , and hence $\frac{1}{2}|f - g|$ is continuous at x_0 , and therefore:

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

is continuous at x_0 (as the sum of two continuous functions)

Remark: Similarly, you can define

Definition:

$$\min(f,g)(x) = \begin{cases} f(x) \text{ if } f(x) \le g(x) \\ g(x) \text{ if } g(x) \le f(x) \end{cases}$$

And similarly you can show

Fact:

If f and g are continuous at x_0 , then $\min(f, g)$ is continuous at x_0

Proof: See Homework for details, but you either show (similar to above) that

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$$

Or use that

$$\min(f,g) = -\max(-f,-g) \quad \Box$$

(Compare this to $\inf(S) = -\sup(-S)$ from Chapter 1)