LECTURE 16: MAX AND MIN VALUES (I)

Welcome to the highlight of our partial derivatives chapter! Today we'll use partial derivatives to figure out when a function has a local maximum or minimum.

1. MAXIMUM AND MINIMUM VALUES

Goal: Find the local maxima and minima of a function

Example 1:

In the picture below, f has a local maximum of 5 at (0,0) and a local minimum of -1 at (-1,1) and at (1,1)

Date: Monday, October 4, 2021.

The good news is that it's similar to single-variable calculus, but this time with a little twist

2. Critical Points

Recall:

In single-variable calculus, you first had to find the critical points of f, where f'(c) = 0.

Here it's the same thing:

Example 2:

Find the critical points of $f(x, y) = x^4 + y^4 - 4x - 32y + 14$

Definition:

(a,b) is a critical point of $f_x(a,b) = 0$ and $f_y(a,b) = 0$

(In other words $\nabla f = \langle 0, 0 \rangle)$

$$f_x = 4x^3 - 4 = 0 \Rightarrow 4x^3 = 4 \Rightarrow x^3 = 1 \Rightarrow x = 1$$

$$f_y = 4y^3 - 32 = 0 \Rightarrow 4y^3 = 32 \Rightarrow y^3 = 8 \Rightarrow y = 2$$

Therefore, the only critical point is (1, 2).

3. Second Derivatives

Recall:

Then you had to use the second derivative test: for every critical point c, calculate f''(c) and find its sign

 $\mathbf{2}$

The only problem is that f(x, y) has 4 second derivatives: $f_{xx}, f_{xy}, f_{yx}, f_{yy}$, so we need to put them together in one quantity.

Example 3:

Find D(1,2), where $f(x,y) = x^4 + y^4 - 4x - 32y + 14$.

(Here (1, 2) is the critical point that we found)

Definition:

$$D(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$$

(D as in **D**eterminant, put all the second derivatives in a table and take the determinant)

Found $f_x = 4x^3 - 4$ and $f_y = 4y^3 - 32$

$$f_{xx} = 12x^2 \qquad f_{xy} = 0 \\ f_{yx} = 0 \qquad f_{yy} = 12y^2 \\ D(x, y) = \begin{vmatrix} 12x^2 & 0 \\ 0 & 12y^2 \end{vmatrix}$$

 \triangle **FIRST** plug in (1, 2) and **THEN** calculate the determinant! Otherwise this will be a hot mess!

$$D(1,2) = \begin{vmatrix} 12(1)^2 & 0\\ 0 & 12(2)^2 \end{vmatrix} = \begin{vmatrix} 12 & 0\\ 0 & 48 \end{vmatrix} = (12)(48) - (0)(0) = 576 > 0$$

(Here we used the fact that $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$)

Now let's see what D(1,2) > 0 tells us about local max/min.

4. The Saddle Point Test

Note: In 2 dimensions, a function can have: a local min, a local max, or a saddle point (goes up and down at the same time)

Turns out there is an easy way to figure out if a function has a saddle point or not:

Mnemonic: Think of "negative" as "sad," just like a saddle!

STEP 3: Here: D(1,2) = 576 > 0, so **NOT** a saddle point

5. The Second Derivative Test

What if you have a critical point and it's not a saddle, like (1, 2) above? Now we're finally ready for the second derivative test

Recall:

In single-variable calculus, In single variable-calculus, $f''(c) < 0 \Rightarrow \text{local max and } f''(c) > 0 \Rightarrow \text{local min}$

Second Derivative Test

Assume D(1,2) > 0 (not a saddle)

(1) If $f_{xx}(1,2) > 0$, then f has a local min at (1,2)

(2) If $f_{xx}(1,2) < 0$, then f has a local max at (1,2)

STEP 4: Found

$$D(1,2) = \begin{vmatrix} 12 & 0 \\ 0 & 48 \end{vmatrix} = 576 > 0$$

Also $f_{xx}(1,2) = 12 > 0$, so f has a local min at (1,2).

Answer: The local min of f is:

$$f(1,2) = 1^4 + 2^4 - 4(1) - 32(2) + 14 = -37$$

6. PUTTING IT TOGETHER

Suggestion: First apply the saddle test, and then apply the second derivative test

Note: If you find that this process is weird and convoluted, it's because it is! There is a very elegant (and more correct) way of doing this, but it requires eigenvalues from linear algebra. If you're interested in the *true* second derivative test, check out this video

STEP 1: Critical Points

$$f_x = 3x^2 - 3 + 3y^2 = 0$$

$$f_y = 6xy = 0 \Rightarrow xy = 0 \Rightarrow x = 0 \text{ or } y = 0$$

Case 1: x = 0, then:

$$f_x = 3(0)^2 - 3 + 3y^2 = -3 + 3y^2 = 0 \Rightarrow 3y^2 = 3 \Rightarrow y^2 = 1 \Rightarrow y = \pm 1$$

This gives us the critical points $(0, \pm 1)$

Case 2: y = 0, then

$$f_x = 3x^2 - 3 + 3(0)^2 = 3x^2 - 3 = 0 \Rightarrow 3x^2 = 3 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$$

This gives us the critical points $(\pm 1, 0)$

Hence there are 4 critical points: $(\pm 1, 0), (0, \pm 1)$, and we need to apply the second derivative tests on all of them.

STEP 2:
$$D(x, y)$$

Recall $f_x = 3x^2 - 3 + 3y^2$ and $f_y = 6xy$
 $f_{xx} = 6x, f_{xy} = 6y, f_{yx} = 6y, f_{yy} = 6x$
 $D(x, y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} 6x & 6y \\ 6y & 6x \end{vmatrix}$

STEP 3: Saddle Point/Second Derivative Tests

Point 1: (0,1)

$$D(0,1) = \begin{vmatrix} 0 & 6 \\ 6 & 0 \end{vmatrix} = -36 < 0 \Rightarrow \text{ Saddle Point}$$

Point 2: (0, -1)

$$D(0,-1) = \begin{vmatrix} 0 & -6 \\ -6 & 0 \end{vmatrix} = -(-6)(-6) = -36 < 0 \Rightarrow \text{ Saddle Point}$$

Point 3: (1,0)

$$D(1,0) = \begin{vmatrix} 6 & 0 \\ 0 & 6 \end{vmatrix} = 36 > 0 \text{ and } f_{xx}(1,0) = 6 > 0 \Rightarrow \text{ Local Min}$$

Point 4: (-1,0)

$$D(-1,0) = \begin{vmatrix} -6 & 0 \\ 0 & -6 \end{vmatrix} = 36 > 0 \text{ and } f_{xx}(-1,0) = -6 < 0 \Rightarrow \text{ Local Max}$$

STEP 4: Conclusion

Saddle Points:

$$f(0,1) = 0^3 - 3(0) + 3(0)(1)^2 = 0$$

$$f(0,-1) = 0^3 - 3(0) + 3(0)(-1)^2 = 0$$

Local Min:

$$f(1,0) = 1^3 - 3(1) + 3(1)(0)^2 = -2$$

Local Max:

$$f(-1,0) = (-1)^3 - 3(-1) - 3(-1)(0)^2 = -1 + 3 = 2$$

7. DISTANCE PROBLEM

Just like in single-variable calculus, there are lots of word problems involving max and min. This one and the next one are two very classical problems.

 \triangle We can't just use the formula for the distance between a point and a plane (from the previous chapter), because that formula just gives you the distance, not the point that is closest.

STEP 1: Find f(x, y)

Recall: The distance between (x, y, z) and (2, 0, -4) is

$$d = \sqrt{(x-2)^2 + y^2 + (z+4)^2}$$

We want to write this in terms of x and y only

By the equation of the plane, we have $x + y + z = 1 \Rightarrow z = 1 - x - y$ Therefore:

$$d = \sqrt{(x-2)^2 + y^2 + (1-x-y+4)^2}$$

We could do the problem using $f(x, y) = \sqrt{\cdots}$ but notice that if d has a minimum at a point, then so does d^2 ! Therefore, we let

$$f(x,y) = d^{2} = (x-2)^{2} + y^{2} + (5-x-y)^{2}$$

And our goal is to minimize f

STEP 2: Critical Points

$$f_x = 2(x - 2) + 2(5 - x - y)(-1)$$

= 2x - 4 - 10 + 2x + 2y
= 4x + 2y - 14 = 0

$$f_y = 2y + 2(5 - x - y)(-1)$$

= 2y - 10 + 2x + 2y
= 2x + 4y - 10 = 0

Therefore we need to solve the system

$$\begin{cases} 4x + 2y = 14\\ 2x + 4y = 10 \end{cases} \Rightarrow \begin{cases} 2x + y = 7\\ x + 2y = 5 \end{cases}$$

The first equation gives us y = 7 - 2x and plugging this into the second equation, we get

$$x + 2(7 - 2x) = 5$$
$$x + 14 - 4x = 5$$
$$-3x = 5 - 14$$
$$-3x = -9$$
$$x = 3$$

And hence y = 7 - 2(3) = 7 - 6 = 1, so y = 1

Therefore the only critical point is (3, 1)

STEP 3: $f_x = 4x + 2y - 14$ and $f_y = 2x + 4y - 10$ $D(x, y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix}$ $D(3, 1) = \begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix} = 12 > 0$

And since $f_{xx} = 4 > 0$ we get that f(x, y) has a local min at (3, 1)

STEP 4: Answer:

$$x = 3, y = 1, z = 1 - x - y = 1 - 3 - 1 = -3$$

Hence the point on the plane closest to (2, 0, -4) is (3, 1, -3)

Note: The distance from (2, 0, -4) to the plane x + y + z = 1 is then just the distance from (2, 0, -4) to (3, 1, -3), which is:

$$\sqrt{(3-2)^2 + (1-0)^2 + (-3+4)^2} = \sqrt{1+1+1} = \sqrt{3}$$

This is basically another derivation of getting the distance between a point and a plane.