## LECTURE 16: MAX AND MIN VALUES (I)

Welcome to the highlight of our partial derivatives chapter! Today we'll use partial derivatives to figure out when a function has a local maximum or minimum.

## 1. Maximum and Minimum Values

Goal: Find the local maxima and minima of a function

## Example 1:

In the picture below, $f$ has a local maximum of 5 at $(0,0)$ and a local minimum of -1 at $(-1,1)$ and at $(1,1)$


Date: Monday, October 4, 2021.

The good news is that it's similar to single-variable calculus, but this time with a little twist

## 2. Critical Points

## Recall:

In single-variable calculus, you first had to find the critical points of $f$, where $f^{\prime}(c)=0$.

Here it's the same thing:

## Example 2:

Find the critical points of $f(x, y)=x^{4}+y^{4}-4 x-32 y+14$

## Definition:

$(a, b)$ is a critical point of $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$
(In other words $\nabla f=\langle 0,0\rangle$ )

$$
\begin{aligned}
& f_{x}=4 x^{3}-4=0 \Rightarrow 4 x^{3}=4 \Rightarrow x^{3}=1 \Rightarrow x=1 \\
& f_{y}=4 y^{3}-32=0 \Rightarrow 4 y^{3}=32 \Rightarrow y^{3}=8 \Rightarrow y=2
\end{aligned}
$$

Therefore, the only critical point is $(1,2)$.

## 3. Second Derivatives

## Recall:

Then you had to use the second derivative test: for every critical point $c$, calculate $f^{\prime \prime}(c)$ and find its sign

The only problem is that $f(x, y)$ has 4 second derivatives: $f_{x x}, f_{x y}, f_{y x}, f_{y y}$, so we need to put them together in one quantity.

## Example 3:

Find $D(1,2)$, where $f(x, y)=x^{4}+y^{4}-4 x-32 y+14$.
(Here $(1,2)$ is the critical point that we found)

## Definition:

$$
D(x, y)=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

( $D$ as in Determinant, put all the second derivatives in a table and take the determinant)

Found $f_{x}=4 x^{3}-4$ and $f_{y}=4 y^{3}-32$

$$
\begin{gathered}
f_{x x}=12 x^{2} \quad f_{x y}=0 \\
f_{y x}=0 \quad f_{y y}=12 y^{2} \\
D(x, y)=\left|\begin{array}{cc}
12 x^{2} & 0 \\
0 & 12 y^{2}
\end{array}\right|
\end{gathered}
$$

FIRST plug in $(1,2)$ and THEN calculate the determinant! Otherwise this will be a hot mess!

$$
D(1,2)=\left|\begin{array}{cc}
12(1)^{2} & 0 \\
0 & 12(2)^{2}
\end{array}\right|=\left|\begin{array}{cc}
12 & 0 \\
0 & 48
\end{array}\right|=(12)(48)-(0)(0)=576>0
$$

(Here we used the fact that $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$ )

Now let's see what $D(1,2)>0$ tells us about local max/min.

## 4. The Saddle Point Test

Note: In 2 dimensions, a function can have: a local min, a local max, or a saddle point (goes up and down at the same time)


Local Min


Local Max


Saddle Point

Turns out there is an easy way to figure out if a function has a saddle point or not:

## Saddle Point Test:

If $D(1,2)<0$, then $f$ has a saddle at $(1,2)$
Mnemonic: Think of "negative" as "sad," just like a saddle!
STEP 3: Here: $D(1,2)=576>0$, so NOT a saddle point

## 5. The Second Derivative Test

What if you have a critical point and it's not a saddle, like $(1,2)$ above? Now we're finally ready for the second derivative test

## Recall:

In single-variable calculus, In single variable-calculus, $f^{\prime \prime}(c)<$ $0 \Rightarrow$ local max and $f^{\prime \prime}(c)>0 \Rightarrow$ local min

## Second Derivative Test

Assume $D(1,2)>0$ (not a saddle)
(1) If $f_{x x}(1,2)>0$, then $f$ has a local min at $(1,2)$
(2) If $f_{x x}(1,2)<0$, then $f$ has a local max at $(1,2)$

STEP 4: Found

$$
D(1,2)=\left|\begin{array}{cc}
12 & 0 \\
0 & 48
\end{array}\right|=576>0
$$

Also $f_{x x}(1,2)=12>0$, so $f$ has a local min at $(1,2)$.
Answer: The local min of $f$ is:

$$
f(1,2)=1^{4}+2^{4}-4(1)-32(2)+14=-37
$$

## 6. Putting it together

Suggestion: First apply the saddle test, and then apply the second derivative test


Note: If you find that this process is weird and convoluted, it's because it is! There is a very elegant (and more correct) way of doing this, but it requires eigenvalues from linear algebra. If you're interested in the true second derivative test, check out this video

Video: The True Second Derivative Test (optional)

## Example 4: (Good quiz/exam question)

Find all the local max, min, and saddle points of

$$
f(x, y)=x^{3}-3 x+3 x y^{2}
$$

## STEP 1: Critical Points

$$
\begin{aligned}
& f_{x}=3 x^{2}-3+3 y^{2}=0 \\
& f_{y}=6 x y=0 \Rightarrow x y=0 \Rightarrow x=0 \text { or } y=0
\end{aligned}
$$

Case 1: $x=0$, then:

$$
f_{x}=3(0)^{2}-3+3 y^{2}=-3+3 y^{2}=0 \Rightarrow 3 y^{2}=3 \Rightarrow y^{2}=1 \Rightarrow y= \pm 1
$$

This gives us the critical points $(0, \pm 1)$
Case 2: $y=0$, then

$$
f_{x}=3 x^{2}-3+3(0)^{2}=3 x^{2}-3=0 \Rightarrow 3 x^{2}=3 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1
$$

This gives us the critical points $( \pm 1,0)$
Hence there are 4 critical points: $( \pm 1,0),(0, \pm 1)$, and we need to apply the second derivative tests on all of them.

STEP 2: $D(x, y)$
Recall $f_{x}=3 x^{2}-3+3 y^{2}$ and $f_{y}=6 x y$
$f_{x x}=6 x, f_{x y}=6 y, f_{y x}=6 y, f_{y y}=6 x$

$$
D(x, y)=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{ll}
6 x & 6 y \\
6 y & 6 x
\end{array}\right|
$$

STEP 3: Saddle Point/Second Derivative Tests
Point 1: $(0,1)$

$$
D(0,1)=\left|\begin{array}{ll}
0 & 6 \\
6 & 0
\end{array}\right|=-36<0 \Rightarrow \text { Saddle Point }
$$

Point 2: $(0,-1)$

$$
D(0,-1)=\left|\begin{array}{cc}
0 & -6 \\
-6 & 0
\end{array}\right|=-(-6)(-6)=-36<0 \Rightarrow \text { Saddle Point }
$$

Point 3: $(1,0)$

$$
D(1,0)=\left|\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right|=36>0 \text { and } f_{x x}(1,0)=6>0 \Rightarrow \text { Local Min }
$$

Point 4: $(-1,0)$
$D(-1,0)=\left|\begin{array}{cc}-6 & 0 \\ 0 & -6\end{array}\right|=36>0$ and $f_{x x}(-1,0)=-6<0 \Rightarrow$ Local Max
STEP 4: Conclusion

## Saddle Points:

$$
\begin{aligned}
f(0,1) & =0^{3}-3(0)+3(0)(1)^{2}=0 \\
f(0,-1) & =0^{3}-3(0)+3(0)(-1)^{2}=0
\end{aligned}
$$

Local Min:

$$
f(1,0)=1^{3}-3(1)+3(1)(0)^{2}=-2
$$

## Local Max:

$$
f(-1,0)=(-1)^{3}-3(-1)-3(-1)(0)^{2}=-1+3=2
$$

## 7. Distance Problem

Just like in single-variable calculus, there are lots of word problems involving max and min. This one and the next one are two very classical problems.

## Example 5:

Find the point on the plane $x+y+z=1$ that is closest to (2, 0, -4)


We can't just use the formula for the distance between a point and a plane (from the previous chapter), because that formula just gives you the distance, not the point that is closest.

STEP 1: Find $f(x, y)$
Recall: The distance between $(x, y, z)$ and $(2,0,-4)$ is

$$
d=\sqrt{(x-2)^{2}+y^{2}+(z+4)^{2}}
$$

We want to write this in terms of $x$ and $y$ only

By the equation of the plane, we have $x+y+z=1 \Rightarrow z=1-x-y$
Therefore:

$$
d=\sqrt{(x-2)^{2}+y^{2}+(1-x-y+4)^{2}}
$$

We could do the problem using $f(x, y)=\sqrt{\cdots}$ but notice that if $d$ has a minimum at a point, then so does $d^{2}$ ! Therefore, we let

$$
f(x, y)=d^{2}=(x-2)^{2}+y^{2}+(5-x-y)^{2}
$$

And our goal is to minimize $f$

## STEP 2: Critical Points

$$
\begin{aligned}
& f_{x}= 2(x-2)+2(5-x-y)(-1) \\
&=2 x-4-10+2 x+2 y \\
&= 4 x+2 y-14=0 \\
& \\
& \\
& f_{y}=2 y+2(5-x-y)(-1) \\
&=2 y-10+2 x+2 y \\
&=2 x+4 y-10=0
\end{aligned}
$$

Therefore we need to solve the system

$$
\left\{\begin{array} { l } 
{ 4 x + 2 y = 1 4 } \\
{ 2 x + 4 y = 1 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x+y=7 \\
x+2 y=5
\end{array}\right.\right.
$$

The first equation gives us $y=7-2 x$ and plugging this into the second equation, we get

$$
\begin{aligned}
x+2(7-2 x) & =5 \\
x+14-4 x & =5 \\
-3 x & =5-14 \\
-3 x & =-9 \\
x & =3
\end{aligned}
$$

And hence $y=7-2(3)=7-6=1$, so $y=1$
Therefore the only critical point is $(3,1)$
STEP 3: $f_{x}=4 x+2 y-14$ and $f_{y}=2 x+4 y-10$

$$
\begin{aligned}
D(x, y) & =\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right| \\
D(3,1) & =\left|\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right|=12>0
\end{aligned}
$$

And since $f_{x x}=4>0$ we get that $f(x, y)$ has a local min at $(3,1)$
STEP 4: Answer:

$$
x=3, y=1, z=1-x-y=1-3-1=-3
$$

Hence the point on the plane closest to $(2,0,-4)$ is $(3,1,-3)$
Note: The distance from $(2,0,-4)$ to the plane $x+y+z=1$ is then just the distance from $(2,0,-4)$ to $(3,1,-3)$, which is:

$$
\sqrt{(3-2)^{2}+(1-0)^{2}+(-3+4)^{2}}=\sqrt{1+1+1}=\sqrt{3}
$$

This is basically another derivation of getting the distance between a point and a plane.

