
LECTURE 16: THE IMPLICIT FUNCTION THEOREM

On the other side of the same coin is the Implicit Function Theorem.

1. Motivation

Goal: Suppose you have an equation of the form F (x, y) = 0, can you
solve for one variable in terms of the other one(s)?

Example 1: Let F (x, y) = x2 + y2 − 1 = 0, that is x2 + y2 = 1.
Then you can solve for y in terms of x because y = ±

√
1− x2. This

expression fails precisely when y = 0 that is when Fy = 0 (this is the
derivative of F with respect to the variable you want to solve for)

Moreover, we can calculate dy
dx in terms of partial derivatives:(

x2 + y2 − 1
)′

= (0)′

2x+ 2y
dy

dx
=0

dy

dx
=− 2x

2y
dy

dx
=− Fx

Fy

Notice how the x and y get switched in the right-hand-side. Again,
notice how this is defined when Fy 6= 0
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Example 2: To prep for the notation of the Implicit Function Thm:

Let n = 3 (number of x variables) and m = 2 (number of y variables),
and define

F : R3+2 → R2 by F = (F1, F2) where

F1(x1, x2, x3, y1, y2) =x1y2 − 4x2 + 3 + 2ey1

F2(x1, x2, x3, y1, y2) =2x1 − x3 + y2 cos(y1)− 6y1

Notice F (x0, y0) = 0 where x0 = (3, 2, 7) and y0 = (0, 1)

Question: Can we solve for y in terms of x, for x near x0 = (3, 2, 7)?

The implicit function theorem says yes provided that “Fy 6= 0” (the
derivative with respect to the variable you want to solve for is nonzero)

[F ′(x, y)] =

[[
y2 −4 0
2 0 −1

]
|
[

2ey1 x1
−y2 sin(y1)− 6 cos(y1)

]]
=
[
Fx | Fy

]
[F ′(x0, y0)] =

[[
1 −4 0
2 0 −1

]
|
[

2 3
−6 1

]]
=
[
Fx(x0, y0) | Fy(x0, y0)

]
Here all you need to check here is that Fy(x0, y0) is invertible, but

|Fy(x0, y0)| =
∣∣∣∣ 2 3
−6 1

∣∣∣∣ = 2 + 18 = 20 6= 0 YES

Then the implicit function theorem then that there is a function y =
G(x) from a neighborhood W of x0 = (3, 2, 7) (x variables) to Rm such
that F (x,G(x)) = 0 (the equation is satisfied)
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Moreover, we can calculate G′(3, 2, 7) via

G′(3, 2, 7) = − (Fy)
−1 Fx = −

[
2 3
−6 1

]−1 [
1 −4 0
2 0 −1

]
= − 1

20

[
5 4 −3
−10 12 2

]
Looking at the (1, 2) entry for example, this tells us ∂y1

∂x2
= − 4

20 = −1
5

Compare this once again with the dy
dx = −Fx

Fy
condition from Example 1.

2. The Implicit Function Theorem

Implicit Function Theorem:

Suppose F : Rn+m → Rm is C1 and F (x0, y0) = 0 for some (x0, y0).

If detFy(x0, y0) 6= 0, then there is an open neighborhood U of (x0, y0)
and an open neighborhood W of x0 and a function G : W → Rm

differentiable at x0 such that

{(x, y) ∈ U | F (x, y) = 0} = {(x,G(x)) | x ∈ W}

Moreover G′(x0) = − (Fy(x0, y0))
−1 Fx(x0, y0)

In other words, if the derivative with respect to the variable you want
to solve for is invertible, then the equation F (x, y) = 0 is locally the
graph of a function y = G(x).

Application: This theorem is extremely useful in PDEs. Lots of
PDEs, especially first-order ones, are usually given by implicit equa-
tions of the form F (x, u,∇u) = 0. The implicit function theorem can
then be used to solve for u in terms of x, provided some “nondegen-
eracy” condition holds, which is usually equivalent to the assumption
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above.

Proof:1

Surprisingly, the Implicit function theorem and Inverse function theo-
rem are equivalent (notice they both solve for one variable in terms of
another one), so our goal is to apply the Inverse Function Theorem to
a cleverly designed function

STEP 1: Given our F , define f : Rn+m → Rn+m by

f(x, y) = (x, F (x, y))

Goal: Apply the Inverse function theorem to f at a = (x0, y0)

First show that f ′(a) is invertible. However

[f ′(x, y)] =

[
In×n 0n×m
Fx Fy

]
Hence [f ′(a)] =

[
In×n 0n×m

Fx(x0, y0) Fy(x0, y0)

]
It then follows from cofactor expansion along the first n rows that

det[f ′(a)] = det[Fy(x0, y0)] 6= 0

Where the last step follows precisely because Fy(x0, y0) is invertible

STEP 2: Hence f ′(a) is invertible and therefore by the Inverse Func-
tion Theorem there is an open set U containing (x0, y0) and an open
set V containing f(x0, y0) such that f : U → V is invertible.

1The proof is taken from this website

https://math.unm.edu/~crisp/courses/math402/spring15/implicit.pdf
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Moreover, f−1 : V → U is differentiable at f(x0, y0) and(
f−1
)′

(f(x0, y0)) = (f ′(x0, y0))
−1

Note: f(x0, y0) = (x0, F (x0, y0)) = (x0, 0)

Write f−1 in terms of components as f−1 =: (h, g)

STEP 3: Define W and G as follows:

W =: {x ∈ Rn | (x, 0) ∈ V }

(Think of it kind of like an x-axis of V )

G(x) =: g(x, 0) for x ∈ W

Notice W is nonempty since x0 ∈ W and W is open since W is just a
projection of V on Rn.

Since f−1 is differentiable at (x0, 0) and g is a component of f−1 it
follows that g is differentiable at (x0, 0) ∈ V and so G is differentiable
at x0.

STEP 4: Let’s show

{(x, y) ∈ U | F (x, y) = 0} = {(x,G(x)) | x ∈ W}

Let A be the left hand side and B be the right-hand-side, and show
each set is contained in the other.

A ⊆ B : If (x, y) ∈ A then (x, y) ∈ U and F (x, y) = 0 from which it
follows that f(x, y) = (x, F (x, y)︸ ︷︷ ︸

0

) = (x, 0)



6 LECTURE 16: THE IMPLICIT FUNCTION THEOREM

Since (x, 0) ∈ V (range of f), by definition x ∈ W and from f(x, y) =
(x, 0) we get (x, y) = f−1(x, 0) = (h(x, 0), g(x, 0))

Comparing components, this implies y = g(x, 0) = G(x) which implies
that (x, y) = (x,G(x)) and since we’ve shown x ∈ W , we get that
(x, y) ∈ B

Hence A ⊆ B and similarly we have B ⊆ A

STEP 5: The only thing left to show is the formula for the derivatives

Note: G(x0) = y0 because f(x0, y0) = (x0, 0) implies f−1(x0, 0) =
(x0, y0) and comparing the second component we get g(x0, 0) = y0 so
G(x0) = y0

Since F (x,G(x)) = 0 for all x ∈ W , F is differentiable at (x0, G(x0)) =
(x0, y0), and G is differentiable at x0, by the Chain Rule, we have

(F (x,G(x)))′ =0

Fx(x0, y0) + Fy(x0, y0)G
′(x0) =0

Fy(x0, y0)G
′(x0) =− Fx(x0, y0)

G′(x0) =− (Fy(x0, y0))
−1 Fx(x0, y0) �

3. The Rank Theorem

In the inverse function theorem, we assumed f ′(a) is invertible, and
we were able to find a local inverse of f .

Question: What if f ′(a) is not invertible?
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Then under some assumptions, the Rank Theorem says that, although
not invertible, f is locally like a projection.

Definition: f and g are C1-equivalent if there are diffeomorphisms α
and β such that β ◦ f = g ◦ α (see picture in lecture)

In other words, if you ignore α and β, we get f = g

Definition: If T is a linear transformation, then rank (T ) = dim(Col(T )).

The rank measures the true size of a linear transformation. For exam-
ple, the 0 transformation has rank 0, but an invertible linear transfor-
mation on Rn has rank n

Rank Theorem: Suppose there is r such that rank (f ′(x)) = r for
all x, then locally f is C1 equivalent to a projection on r−dimensional
space

Example 1: If f ′ has constant rank 1, then locally f looks like the
projection P (x, y, z) = (x, 0, 0) (see picture in lecture)

Example 2: If f ′ has constant rank 2, then locally f looks like the
projection P (x, y, z) = (x, y, 0) (see picture in lecture)

What makes this amazing is that it tells you about the dimension of
the space just by looking at tangent planes. For example, the tangent
plane of the sphere in R3 has rank 2 (spanned by 2 vectors), which
explains why that sphere is 2−dimensional.

As another example, the radial projection P : R3 → S2 with P (v) = v
|v|

has constant rank 2 and is locally indistinguishable from linear projec-
tion of R3 to the (x, y) plane.
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