LECTURE 17: PROPERTIES OF CONTINUITY

Today: We'll prove two of the three *Value Theorems* used in Calculus: The Extreme Value Theorem and the Intermediate Value Theorem. The Mean Value Theorem will be proven in Chapter 5.

Note: To give you a break, today we will not use any $\epsilon - \delta \odot$

1. Bounded Functions

Video: Bounded Functions

As a warm-up, let's show that continuous functions are bounded

Definition:

f is **bounded** if there is M > 0 such that for all $x, |f(x)| \leq M$

Date: Tuesday, October 26, 2021.

(This is similar to the definition of sequences being bounded)

If $f:[a,b] \to \mathbb{R}$ is continuous, then f is bounded

Proof: Suppose not. Then for all $n \in \mathbb{N}$, there is some $x_n \in [a, b]$ with $|f(x_n)| > n$ (this is just the negation with M = n)

Since $x_n \in [a, b]$, the sequence (x_n) is bounded.

Therefore, by Bolzano-Weierstraß, (x_n) has a convergent subsequence (x_{n_k}) that converges to some $x_0 \in [a, b]$.

Since $x_{n_k} \to x_0$ and f is continuous, we have $f(x_{n_k}) \to f(x_0)$ and so $|f(x_{n_k})| \to |f(x_0)|$

On the other hand, since $|f(x_n)| > n$ for all n, we have $|f(x_n)| \to \infty$. This is true for the subsequence $f(x_{n_k})$ as well, so $|f(x_{n_k})| \to \infty$

Comparing the two limits, we get $|f(x_0)| = \infty$, which is absurd $\Rightarrow \Leftarrow$

2. The Extreme Value Theorem

Video: The Extreme Value Theorem

The Extreme Value Theorem is one of the unsung heroes in Calculus. It says that any continuous function f on [a, b] must have a max and a min. Without this, optimization problems would be impossible!

Definition:

f has a **maximum** on [a, b] if there is $x_0 \in [a, b]$ such that $f(x_0) \ge f(x)$ for all $x \in [a, b]$

(Similarly for minimum)

Important: By definition, the maximum has to be attained. In other words, there must be some x_0 such that $f(x_0)$ is that maximum!

Extreme Value Theorem:

Suppose $f:[a,b] \to \mathbb{R}$ is continuous, then f has a maximum and a minimum on [a,b]

First, let's state a Useful Lemma that will be useful both here and for the Intermediate Value Theorem. The proof was on the homework.

Useful Lemma:

If S is bounded above, then there is a sequence (s_n) in S that converges to $\sup(S)$

4

Proof of the Extreme Value Theorem:

Note: It's enough to show that f has a maximum, since we can repeat the same proof with -f instead of f

STEP 1: Since f is continuous on [a, b], f is bounded, so consider

$$S = \{ f(x) \mid x \in [a, b] \}$$

Then S is bounded (since f is bounded), and therefore S has a least upper bound $\sup(S) =: M$

STEP 2: By the Useful Lemma above, there is a sequence $y_n \in S$ with $y_n \to \sup(S) = M$

Since $y_n \in S$, we get $y_n = f(x_n)$ for some $x_n \in [a, b]$ (by def of S)

Since $x_n \in [a, b]$, (x_n) is bounded. Therefore, by Bolzano-Weierstraß, (x_n) has a convergent subsequence $x_{n_k} \to x_0$ for some $x_0 \in [a, b]$

On the one hand, since $x_{n_k} \to x_0$ and f is continuous, $f(x_{n_k}) \to f(x_0)$

On the other hand, $f(x_n) = y_n \to M$ (by definition of y_n). In particular, the subsequence $f(x_{n_k}) = y_{n_k} \to M$ as well.

Comparing the two limits, we get $f(x_0) = M$

But for all $x \in [a, b]$, we have

$$f(x_0) = M = \sup \{ f(x) \mid x \in [a, b] \} \ge f(x)$$

And therefore $f(x_0) \ge f(x)$ for all x, so f has a max at x_0

Note: What makes this work is that [a, b] is *compact*. Check out this video if you're interested: Continuity and Compactness

3. The Intermediate Value Theorem

Video: Intermediate Value Theorem

Let's now discuss the second Value Theorem of Calculus: The Intermediate Value Theorem. It says that if f is continuous, then f attains all the values between f(a) and f(b):

Intermediate Value Theorem:

If $f : [a, b] \to \mathbb{R}$ is continuous and if c is any number between f(a) and f(b), then there is some $x \in [a, b]$ such that f(x) = c

Note: There are functions f that are not continuous, but that satisfy the intermediate value property above.

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Discontinuous at 0 but satisfies the intermediate value property

Proof of the Intermediate Value Theorem:

STEP 1: WLOG, assume f(a) < c < f(b) and consider

$$S = \{ x \in [a, b] \mid f(x) < c \}$$

Then $S \neq \emptyset$ (because $a \in S$) and S is bounded above by b, therefore S has a least upper bound $\sup(S) =: x_0$

Claim: $f(\mathbf{x_0}) = c$

We will do this by showing $f(x_0) \le c$ and $f(x_0) \ge c$

STEP 2: Show $f(x_0) \leq c$

By the Useful Lemma from above, there is a sequence (x_n) in S with $x_n \to x_0$. Therefore, since f is continuous, we get $f(x_n) \to f(x_0)$.

But since $x_n \in S$, by definition of S, we have $f(x_n) < c$, and therefore

$$f(x_0) = \lim_{n \to \infty} f(x_n) \le c \checkmark$$

STEP 3: Show $f(x_0) \ge c$

First of all, we have $x_0 \neq b$ because $f(x_0) \leq c$ whereas f(b) > c. Hence $x_0 < b$.

Since $x_0 < b$, for *n* large enough, we have $t_n =: x_0 + \frac{1}{n} < b$ So $t_n \in [a, b], t_n > x_0$, and $t_n \to x_0$.

Since $t_n \to x_0$ and f is continuous, we have $f(t_n) \to f(x_0)$

Moreover, since $t_n > x_0$ and $x_0 = \sup(S)$, we must have $t_n \notin S$, meaning that (by definition of S), $f(t_n) \ge c$.

Hence, we have

$$f(x_0) = \lim_{n \to \infty} f(t_n) \ge c \checkmark$$

Combining **STEP 2** and **STEP 3**, we have $f(x_0) = c$

Note: The same result holds if you replace [a, b] by any *connected* set. Connected just means that the set just had one piece. For instance [a, b] is connected but $[0, 1] \cup [2, 3]$ is disconnected; it has two pieces.

4. Application 1: Fixed Points

Video: What is a fixed point?

Here are two fun applications of the IVT:

Application 1:

If $f : [0,1] \to [0,1]$ is continuous, then f has a **fixed point**: there is some x_0 in [0,1] such that $f(x_0) = x_0$

(In other words, there is a point x_0 such that, when you apply f to it, then nothing happens)

Geometrically, this means that, f must cross the line y = x.

Proof: Let g(x) = f(x) - x, then g is continuous since f is continuous Moreover, $g(0) = f(0) - 0 = f(0) \ge 0$

And $g(1) = f(1) - 1 \le 0$ since $f(x) \le 1$ for all x.

Therefore, by the IVT with c = 0 there is x_0 in [0, 1] such that

$$g(x_0) = 0 \Rightarrow f(x_0) - x_0 = 0 \Rightarrow f(x_0) = x_0 \quad \Box$$

Applications: Fixed points are very important in math and beyond. Here are some fun applications of fixed points:

- (1) No matter how well you shake a snowglobe, then there is always one snowflake which lands on exactly same position it started!
- (2) Take an ordinary map of a country, and suppose that that map is laid out on a table inside that country. There will always be a 'You are Here' point on the map which represents that same point in the country.

5. Application 2: Square Roots

Video: What is a square root?

As a second application, let's show that $\sqrt{x} = x^{\frac{1}{2}}$ exists

Application 2:

If $y \ge 0$, then there is a unique $x \ge 0$ with $y = x^2$

Note: The x as above is called the square root of $y, x = \sqrt{y}$

Proof: Existence: Let $y \ge 0$ be given and consider $f(x) = x^2$ (continuous).

Then, on the one hand, $f(0) = 0 \le y$.

On the other hand, there is b such that $f(b) \ge y$ (if $y \le 1$, let b = 1, and if y > 1, let b = y, see picture below)

Since $f(0) \le y \le f(b)$, by the IVT, there is $x \ge 0$ such that f(x) = y, that is $x^2 = y \checkmark$

Uniqueness: Suppose $a, b \ge 0$ are such that $a^2 = y$ and $b^2 = y$. Then if a < b, then we get $a^2 < b^2$, so $y < y \Rightarrow \Leftarrow$ Similar contradiction if a > b, and therefore $a = b \checkmark$

Note: For a more elementary proof that doesn't use the IVT, check this video: Construction of \sqrt{x}