LECTURE 17: MAX AND MIN (II), LAGRANGE MULTIPLIERS (I)

1. IKEA Problem

Video: IKEA Problem
Hello everyone and welcome to IKEA! Today, in addition to eating delicious meatballs, we would like to design a special box named Malmök

Example 1:

Find the smallest surface area of a box whose volume is $1000 \mathrm{~cm}^{3}$

STEP 1: Find $f(x, y)$

Date: Wednesday, October 6, 2021.

The surface area of the box with length x, width y and height z is:

$$
S=2 x y+2 y z+2 x z
$$

We want to write this in terms of x and y only. However

$$
\begin{gathered}
\qquad=x y z=1000 \Rightarrow z=\frac{1000}{x y} \\
\text { Therefore } S=2 x y+2 y\left(\frac{1000}{x y}\right)+2 x\left(\frac{1000}{x y}\right) \\
\qquad f(x, y)=2 x y+\frac{2000}{x}+\frac{2000}{y}
\end{gathered}
$$

STEP 2:

$$
\begin{aligned}
& f_{x}=2 y-\frac{2000}{x^{2}}=0 \Rightarrow 2 y=\frac{2000}{x^{2}} \Rightarrow y=\frac{1000}{x^{2}} \\
& f_{y}=2 x-\frac{2000}{y^{2}}=0 \Rightarrow 2 x=\frac{2000}{y^{2}} \Rightarrow x=\frac{1000}{y^{2}}
\end{aligned}
$$

However, remember that $y=\frac{1000}{x^{2}}$, therefore:

$$
x=\frac{1000}{y^{2}}=\frac{1000}{\left(\frac{1000}{x^{2}}\right)^{2}}=\left(\frac{1000}{1000^{2}}\right) x^{4}=\frac{x^{4}}{1000}
$$

But assuming $x \neq 0$, we get:

$$
x=\frac{x^{4}}{1000} \Rightarrow 1=\frac{x^{3}}{1000} \Rightarrow x^{3}=1000 \Rightarrow x=\sqrt[3]{1000} \Rightarrow x=10
$$

And then we get

$$
y=\frac{1000}{x^{2}}=\frac{1000}{10^{2}}=10
$$

Therefore the only critical point is $(10,10)$
STEP 3: $f_{x}=2 y-\frac{2000}{x^{2}}=2 y-2000 x^{-2}$ and $f_{y}=2 x-\frac{2000}{y^{2}}$
$f_{x x}=-2000(-2) x^{-3}=\frac{4000}{x^{3}}, f_{x y}=f_{y x}=2$ and $f_{y y}=\frac{4000}{y^{3}}$

$$
\begin{gathered}
D(x, y)=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{4000}{x^{3}} & 2 \\
2 & \frac{4000}{y^{3}}
\end{array}\right| \\
D(10,10)=\left|\begin{array}{cc}
\frac{4000}{1000} & 2 \\
2 & \frac{4000}{1000}
\end{array}\right|=\left|\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right|=12>0
\end{gathered}
$$

And $f_{x x}(10,10)=4>0$, therefore f has a local minimum at $(10,10)$
STEP 4: Finally, to find the smallest surface area, use

$$
z=\frac{1000}{x y}=\frac{1000}{10 \times 10}=10
$$

Hence $x=10, y=10, z=10$ and
$S=2 x y+2 y z+2 x z=2(10)(10)+2(10)(10)+2(10)(10)=600 \mathrm{~cm}^{2}$
Note: The optimal box here is a cube! Isn't it pretty how nature balances itself out like that? ©

Note: For more practice, try the following related problem:

Extra Practice:

Find the largest possible volume of a box whose surface area is $600 \mathrm{~cm}^{2}$ (In that case you should also find that it's a cube)

2. Absolute Max and Min

Sometimes you also want to find the absolute \max / min of a function

Example 2:

Find the absolute \max / min of the following function on the triangle with vertices $(1,0),(5,0),(1,4)$

$$
f(x, y)=2+x y-x-2 y
$$

Pro: Don't need second derivatives

Con: Need to check "endpoints"
Idea: Find all the potential candidates for max/min and then compare them at the end.

STEP 1: Critical Points

$$
\begin{aligned}
& f_{x}=y-1=0 \Rightarrow y=1 \\
& f_{y}=x-2=0 \Rightarrow x=2
\end{aligned}
$$

Hence the only critical point is $(2,1)$, which is inside the triangle (if it's not, then you ignore it)

Note: For absolute max, don't need to take second derivatives!
STEP 2: Endpoints
Here the triangle has 3 endpoints: $(1,0),(5,0),(1,4)$
STEP 3: Find the critical points on each line segment.

Case 1: On L_{1}, we have $y=0$, so

$$
f(x, y)=f(x, 0)=1+x(0)-x-2(0)=2-x
$$

$(2-x)^{\prime}=-1 \neq 0$, so there are no critical points on L_{1}
Case 2: On L_{2}, we have $y=5-x$ (line connecting $(1,4)$ and $(5,0)$):

$$
\begin{aligned}
f(x, y) & =f(x, 5-x) \\
& =2+x(5-x)-x-2(5-x) \\
& =2+5 x-x^{2}-x-10+2 x \\
& =-x^{2}+6 x-8
\end{aligned}
$$

$$
\left(-x^{2}+6 x-8\right)^{\prime}=-2 x+6=0 \Rightarrow x=3
$$

But if $x=3$ then $y=5-x=5-3=2$ so our critical point is $(3,2)$
Case 3: On L_{3}, we have $x=1$ and

$$
f(x, y)=f(1, y)=2+(1) y-1-2 y=1-y
$$

$(1-y)^{\prime}=-1 \neq 0$, so there are no critical points on L_{3}

STEP 4: Our Candidates

$(1,2)$	$f(2,1)=0$
$(1,0)$	$f(1,0)=1$
$(5,0)$	$f(5,0)=-3$
$(1,4)$	$f(1,4)=-3$
$(3,2)$	$f(3,2)=1$

The absolute max (biggest value) is $f(1,0)=f(3,2)=1$
The absolute min (smallest value) is $f(5,0)=f(1,4)=-3$

Example 3: (Extra Practice)

Find the absolute max/min of $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle

$$
R=\{(x, y) \mid 0 \leq x \leq 3,0 \leq y \leq 2\}
$$

STEP 1: Critical Points

$$
\begin{aligned}
& f_{x}=2 x-2 y=0 \Rightarrow 2 x=2 y \Rightarrow x=y \\
& f_{y}=-2 x+2=0 \Rightarrow 2 x=2 \Rightarrow x=1
\end{aligned}
$$

Hence $x=1$ and $y=x=1$ so the critical point is $(1,1)$, which is in R STEP 2: Endpoints

There are four endpoints: $(0,0),(3,0),(3,2),(0,2)$
STEP 3: Critical points on sides
Notice the boundary (sides) of R consists of 4 line segments $L_{1}, L_{2}, L_{3}, L_{4}$
Case 1: On L_{1}, we have $y=0$, so

$$
f(x, y)=f(x, 0)=x^{2}-2 x(0)+2(0)=x^{2}
$$

$\left(x^{2}\right)^{\prime}=2 x=0$ which gives $x=0$ (and $y=0$), which gives $(0,0)$, but which we have already considered in STEP 2

Case 2: On L_{2}, we have $x=3$ and

$$
f(x, y)=f(3, y)=3^{2}-2(3) y+2 y=9-4 y
$$

But $(9-4 y)^{\prime}=-4 \neq 0$, so no critical points
Case 3: On L_{3}, we have $y=2$ and

$$
f(x, y)=f(x, 2)=x^{2}-4 x+4
$$

$\left(x^{2}-4 x+4\right)^{\prime}=2 x-4=0$ which gives $x=2$ (and $y=2$), which gives the critical point $(2,2)$

Case 4: On L_{4}, we have $x=0$ and

$$
f(x, y)=f(0, y)=2 y
$$

$(2 y)^{\prime}=2 \neq 0$, so no critical points on L_{4}

STEP 4: Our Candidates

$(1,1)$	$f(1,1)=1$
$(0,0)$	$f(0,0)=0$
$(3,0)$	$f(3,0)=9$
$(3,2)$	$f(3,2)=1$
$(0,2)$	$f(0,2)=4$
$(2,2)$	$f(2,2)=0$

The absolute max is $f(3,0)=9$
The absolute min is $f(0,0)=f(2,2)=0$

3. Lagrange Multipliers

What if our region is more complicated? Then we have to use the power of Multivariable Calculus © $^{\text {P }}$

Example 4: (Motivation)

Find the absolute max/min of the following function on the circle $x^{2}+y^{2}=1$ (constraint)

$$
f(x, y)=x^{2}+2 y^{2}
$$

Picture:

Think of it as follows: Suppose you're walking in a circle on a mountain, then what is your biggest and smallest height?

In fact, since we're talking about mountains, the solution to this problem are level curves!

Notation: $\quad x^{2}+y^{2}=1 \Rightarrow \underbrace{x^{2}+y^{2}-1}_{g(x, y)}=0 \Rightarrow g=0$

Recall:

∇g is perpendicular to level curves of g

Now think of $g=0$ as fixed, and draw level curves of f until you reach the curve of the highest point:

Important Observation:
At the max $/ \mathrm{min}, \nabla f$ and ∇g are parallel, that is $\nabla f=c \nabla g$ for some c

Which ultimately leads to:

Lagrange Equation:

$$
\nabla f=\lambda \nabla g
$$

Here λ is called the Lagrange multiplier. It's a useful tool to find absolute $\mathrm{max} / \mathrm{min}$ of a function given a constraint.

4. Finding Absolute Max/Min

Let's now use the Lagrange equation to solve our original problem:

Example 5:

Find the absolute \max / min of $f(x, y)=x^{2}+2 y^{2}$ on $x^{2}+y^{2}=1$
$g(x, y)=x^{2}+y^{2}-1$
STEP 1: Lagrange Equation: $\nabla f=\lambda \nabla g$:

$$
\left\{\begin{array} { c }
{ f _ { x } = \lambda g _ { x } } \\
{ f _ { y } = \lambda g _ { y } } \\
{ x ^ { 2 } + y ^ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{c}
2 x=\lambda(2 x) \\
4 y=\lambda(2 y) \\
x^{2}+y^{2}=1
\end{array}\right.\right.
$$

STEP 2: Collect Points

Tips:

(1) Remember that you have to solve for x and y, not λ. Here λ is just a helper (like Yoshi in Super Mario)
(2) Use the constraint $x^{2}+y^{2}=1$ last

$$
\left\{\begin{array}{l}
2 x=\lambda(2 x) \Rightarrow x-\lambda x=0 \Rightarrow x(1-\lambda)=0 \Rightarrow x=0 \text { or } \lambda=1 \\
4 y=\lambda(2 y) \Rightarrow 2 y-\lambda y=0 \Rightarrow y(2-\lambda)=0 \Rightarrow y=0 \text { or } \lambda=2
\end{array}\right.
$$

Case 1: $x=0$ and $y=0$, but then $x^{2}+y^{2} \neq 1 \boldsymbol{x}$
Case 2: $x=0$ and $\lambda=2$, then

$$
x^{2}+y^{2}=1 \Rightarrow 0^{2}+y^{2}=1 \Rightarrow y^{2}=1 \Rightarrow y= \pm 1
$$

Which gives the candidates $(0,1),(0,-1)$
Case 3: $\lambda=1$ and $y=0$, then

$$
x^{2}+y^{2}=1 \Rightarrow x^{2}+0^{2}=1 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1
$$

Which gives the candidates $(1,0),(-1,0)$
Case 4: $\lambda=1$ and $\lambda=2$ Impossible \boldsymbol{x}
STEP 3: Compare

$$
\begin{array}{|l|l|}
\hline(0,-1) & f(0,-1)=2 \\
\hline(0,1) & f(0,1)=2 \\
\hline(1,0) & f(1,0)=1 \\
\hline(-1,0) & f(-1,0)=1 \\
\hline
\end{array}
$$

The absolute max is $f(0,1)=f(0,-1)=2$
The absolute min is $f(1,0)=f(-1,0)=1$

5. More Practice

There are essentially two types of Lagrange problems: Either you solve for x and y in cases, or you solve for x and y in terms of λ, as the following example shows

Example 6: (extra practice)

Find the absolute \max / min of $f(x, y)=8 x+10 y$ on $x^{2}+y^{2}=41$

Notice $z=8 x+10 y$ is a plane, so we have to find the biggest and smallest value of a plane, given that we're walking on a circle \prod^{11}

[^0]$f(x, y)=8 x+10 y, \quad g(x, y)=x^{2}+y^{2}-41$
STEP 1: Lagrange Equation
\[

\left\{$$
\begin{array} { r }
{ f _ { x } = \lambda g _ { x } } \\
{ f _ { y } = \lambda g _ { y } } \\
{ x ^ { 2 } + y ^ { 2 } = 4 1 }
\end{array}
$$ \Rightarrow \left\{$$
\begin{array}{r}
8=\lambda(2 x) \\
10=\lambda(2 y) \\
x^{2}+y^{2}=41
\end{array}
$$\right.\right.
\]

STEP 2: Collect Points
This time it's useful to solve for λ in terms of x and y. Notice that $x \neq 0$ and $y \neq 0$ are both nonzero, otherwise the above equations wouldn't hold

$$
\left\{\begin{aligned}
& 8=\lambda(2 x) \Rightarrow x=\frac{8}{2 \lambda}=\frac{4}{\lambda} \\
& 10=\lambda(2 y) \Rightarrow y=\frac{10}{2 \lambda}=\frac{5}{\lambda}
\end{aligned}\right.
$$

Therefore the constraint $x^{2}+y^{2}=41$ becomes:

$$
\begin{aligned}
\left(\frac{4}{\lambda}\right)^{2}+\left(\frac{5}{\lambda}\right)^{2} & =41 \\
\frac{16}{\lambda^{2}}+\frac{25}{\lambda^{2}} & =41 \\
\frac{41}{\lambda^{2}} & =41 \\
\frac{1}{\lambda^{2}} & =1 \\
\lambda^{2} & =1 \\
\lambda & = \pm 1
\end{aligned}
$$

Case 1: $\lambda=1$, but then:

$$
x=\frac{4}{\lambda}=\frac{4}{1}=4, \quad y=\frac{5}{\lambda}=5
$$

Which gives the point $(4,5)$
Case 2: $\lambda=-1$, but then:

$$
x=\frac{4}{\lambda}=\frac{4}{-1}=-4, \quad y=\frac{5}{\lambda}=-5
$$

Which gives the point $(-4,-5)$
STEP 3: Compare

$$
\begin{array}{|l|l|}
\hline(4,5) & f(4,5)=82 \\
\hline(-4,-5) & f(-4,-5)=-82 \\
\hline
\end{array}
$$

The absolute max is $f(4,5)=82$
The absolute min is $f(-4,-5)=-82$

[^0]: ${ }^{1}$ The picture was adapted from Wikipedia

