LECTURE 17: SECOND-ORDER DERIVATIVES

1. SECOND-ORDER DERIVATIVES

Notice: If f : R" — R is real-valued, then so are its partial derivatives

fﬂflvflﬂga . '7f$n

If the partial derivatives f,, happen themselves to be differentiable,
then we can define the second-order partial derivatives as

Definition: (f,), = 2L (f,,) (Rudin uses Dj; for this)
In general, we do not have (fx>a;J =+ (f%)z

Example: If f(0,0) = 0 and

ry(z? — y?)

flz,y) = Y

Then (fs,),, (0,0) = =1 but (fs,),, (0,0) =1 (see homework)
(The problem is once again interchange of limits in the derivatives)

That said, if the second-order partial derivatives are continuous, then
the above is true.

Date: Monday, August 1, 2022.



2 LECTURE 17: SECOND-ORDER DERIVATIVES

Rectangle Lemma: Suppose f;, and (f,),, are exist in R2. Let Q
be the rectangle with opposite vertices (a,b) and (a + h,b + k) where
h,k # 0 (see picture in lecture) and let

A(f,Q) = fla+hb+k) = fla+h,b) — fla,b+ k) + f(a,b)
Then there is a point (z,y) inside @ such that

AQ)
L2 — (), (00)

Compare this with the Mean Value Theorem W = f'(c). Here
we're saying that a difference quotient can be estimated with second
derivatives. It should remind you a little bit of the formula

T ) = 2f() 4 flr— )
h—0 h?

= f"(z)
Proof:

STEP 1: Let u(t) = f(t,b+ k) — f(t,b), then

A(f,Q) = ula+h) —u(a)

By the Mean-Value Theorem applied to u, there is x between a and
a + h such that u(a + h) — u(a) = hu'(x)

But v/(t) = f3,(t,b+ k) — f5,(¢,b) and so
u'(x) = fo, (2,0 + k) = fr, (2, 0)
Let v(t) = f.,(x,t) then

u'(x) =v(b+ k) — v(b)
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By the mean-value theorem applied to v, there is y between b and b+ k
such that v(b+ k) — v(b) = kv'(y)

But o/(1) = (f2,),, (2.2) and 50 /(y) = (£,,), (x.4).
STEP 2: Combining everything we get

A(f, Q) =ula + h) — u(a)
=hu'(x)
=h(v(b+ k) —v(b))
=hkv'(y)
=hk (fe)), (2,y) O

Theorem: [Clairaut/Schwarz Theorem]

If moreover (f,,),, is continuous at (a,b) then (f,), (a,b) exists and

(fo2)e, (@:0) = (fa,),, (@, D)

Fun Fact: Clairaut had 19 siblings, and published his first math pa-
per at 12 years old!

Proof: Let ¢ > 0 be given and A =: (f,),, (a,b). By continuity, if h
and k are small enough, then for all (z,y) € @ (rectangle) we have

|(f$1)at2 (xay) - A’ <€

Therefore by the Rectangle Lemma above, we have

‘A(f, Q)
hk

Now if we let k — 0 first, then we get

— A

<€
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. A(f,Q)
'(zlff(l) hk )_A‘SE

But A(f,Q) 1 [(f(a+h,b+k]i—f(a+h,b)> B (f(a,b+k]i—f(a,b)>}

hk h
fmg (a+h7b)7fm2 (avb)
h

So as kK — 0 this just tends to and hence

fﬁCQ(a—{_ h7b) B f$2(a’7 b) . A‘
h

Finally, if you let h — 0, since this is true for all € > 0 we get

< ¢

(foo)e, (@,0) = A=:(f2,),, (a,0) O

Definition: In that case (unambiguous by Clairaut)

orf B B
axlax2 o fx1x2 o (fxl)xQ — (fx2)$1

Definition: f is C? if f is C' and all the second-order partial deriva-
tives are continuous.

2. THE TRUE SECOND-DERIVATIVE TEST
Video: The True Second-Derivative Test

Definition: The Hessian of f is

20 | 0*f

Note: If f is C? then this matrix is symmetric


https://www.youtube.com/watch?v=9fagVI87AzY
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As an application of this, let’s state the true second derivative test for
max/min (not the fake version you learned in multivariable calculus)

The True Second-Derivative Test: Suppose f'(a) = 0 for some a

(1) If all the eigenvalues of D?f(a) are > 0, f has a local min at a
(2) If all the eigenvalues of D?f(a) are < 0, f has a local max at a

(3) If the eigenvalues of D?f(a) are mixed (positive/neg) then f
has a saddle point at a

(4) Else the test is inconclusive
Example: f(z,y) = 2° — 3z + 32y

Can show that f has a critical point at (1,0) and

pr=[i ] =l &) = 0o =5

The eigenvalues are A = 6 and A\ = 6, which are positive, hence f has
a local min at (1,0)

3. DIFFERENTIATION OF INTEGRALS

Finally, let’s discuss the very delicate question of differentiation of in-
tegrals.

Question: When do we have

d (" i,
E/a gb(x,t)dx:/a a—f(az,t)dx
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In general, this is not true (see homework), but we can show that this
does hold provided 7 &b is continuous

Fact: Suppose ¢ : [a,b] X [¢,d] — R and % are continuous, and if

"9

T —(x,t)dx

b
:/ é(x,t)dx then f'(t) =
Proof:

STEP 1: Fix t and consider the difference quotient
¢(x7 S) T ¢($7 t)

wlw,s) = S
Claim: 8¢

This convergence is uniform in z (independent of x)

Why? Let € > 0 be given. By uniform continuity of ¢ there is 6 > 0
such that if |s — t| < 0 and all x, we have

0o 0¢
ot ( 78) - E(
With that § > 0, if |s —t| < 0, then by the Mean-Value Theorem
applied to ¢(z,-), there is a u between s and t such that

0(x,5) = 22 (a,u)

x,t)| <€

But in particular |u —t| < ¢ (u is closer to ¢ than s is) and so

0¢ 0¢

875( T, u) _E@E t)‘ <e= ‘@b(:c,s) —%(m,t) <ev

ot
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STEP 2: By definition of f, we have

s—t /szs

But since ¢(z, s) — g¢(x t) as s — t, uniformly in z, we get
" 9¢

lim ————~ J(5) = = hm/ Y(x,s)dr = g —(x,t)dx

s—t S — t s—t

(We can put the limit inside the integral by uniform convergence)

This implies that f/(t) exists as a limit and f(t) = f; %f(x,t)dx O

Note: There’s a related identity called the Leibniz rule for integrals
that is often used in practice

d [! Lo
& [ oletis =ttty + [ 5wt

4. AN INTERESTING EXAMPLE

Let f(t) = /OO e~ cos(xt)dx

o

In this section we will find an explicit formula for f

Claim # 1:

e.¢]

f'(t) = g(t) where g(t) = / —ze ™ sin(at)dz

oo

(This is what you expect if you naively differentiate under the integral)
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Proof: First of all, notice that for all o and § we have
a+p
cos(a + ) — cos(a) —/ — sin(t)dt
cos(a + 5) — cos(« /
=3 — sin(t

cos(a+ ) — Cos((x i
3 + sin(« =3 / sin(a) — sin(t)dt

(Here we used that sin(a) is constant)

If 8> 0 and using |sin(z) —sin(y)| < |z — y| and o — ¢t < 0 we get

cos(a + ) — cos(a)
5

+ sin(a)| =

F
B Ja
1 [foth

gﬁﬂ/‘ sin(a) — sin(t)| dt

1 a+p

g—/ o — ] dt
B Ja
1

=5 [(t fffﬁ -5(%)-3

A similar formula holds if § < 0 and so

mm@—ammﬂ

cos(a + ) — cos(a)
5

Now apply the above with @ = xt and 8 = xh and use the definitions
of f and g to get

‘f(HhZ—f(t) _g(t)‘ <1l (/_OO xze_xzdx)

e.¢]

+sin(a)| < [6|
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Therefore, letting h — 0 we obtain that f/(t) = g(t) v/

2

Claim # 2: f(t) = /me 7

Proof: Integrate f(¢) = [~ e~ cos(xt)dx by parts with du = cos(xt)

and v =e"" to get

f(t) = — /_Z 23~ (Sinixt)) dr = —2 (

(1) =~ 2(1)
() =-2f()  (Since f' =)
et
i "o

(nlf@)l) =5

2

In|f(6) =~ 7 +C

£(0)] =€ e

F(t) =gee T = f(1) = Ce”
C

C'= f(0) = /OO e cos(z0)dx = /OO e dr = /7

0 —0Q

Therefore f(t) = \/%e_§
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