
LECTURE 17: SECOND-ORDER DERIVATIVES

1. Second-Order Derivatives

Notice: If f : Rn → R is real-valued, then so are its partial derivatives
fx1, fx2, . . . , fxn

If the partial derivatives fxi happen themselves to be differentiable,
then we can define the second-order partial derivatives as

Definition: (fxi)xj = ∂
∂xj

(fxi) (Rudin uses Dji for this)

In general, we do not have (fxi)xj 6=
(
fxj
)
xi

Example: If f(0, 0) = 0 and

f(x, y) =
xy(x2 − y2)
x2 + y2

Then (fx1)x2 (0, 0) = −1 but (fx2)x1 (0, 0) = 1 (see homework)

(The problem is once again interchange of limits in the derivatives)

That said, if the second-order partial derivatives are continuous, then
the above is true.

Date: Monday, August 1, 2022.
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Rectangle Lemma: Suppose fx1 and (fx1)x2 are exist in R2. Let Q
be the rectangle with opposite vertices (a, b) and (a + h, b + k) where
h, k 6= 0 (see picture in lecture) and let

∆(f,Q) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

Then there is a point (x, y) inside Q such that

∆(f,Q)

hk
= (fx1)x2 (x, y)

Compare this with the Mean Value Theorem f(b)−f(a)
b−a = f ′(c). Here

we’re saying that a difference quotient can be estimated with second
derivatives. It should remind you a little bit of the formula

lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
= f ′′(x)

Proof:

STEP 1: Let u(t) = f(t, b+ k)− f(t, b), then

∆(f,Q) = u(a+ h)− u(a)

By the Mean-Value Theorem applied to u, there is x between a and
a+ h such that u(a+ h)− u(a) = hu′(x)

But u′(t) = fx1(t, b+ k)− fx1(t, b) and so

u′(x) = fx1(x, b+ k)− fx1(x, b)

Let v(t) = fx1(x, t) then

u′(x) = v(b+ k)− v(b)
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By the mean-value theorem applied to v, there is y between b and b+k
such that v(b+ k)− v(b) = kv′(y)

But v′(t) = (fx1)x2 (x, t) and so v′(y) = (fx1)x2 (x, y).

STEP 2: Combining everything we get

∆(f,Q) =u(a+ h)− u(a)

=hu′(x)

=h(v(b+ k)− v(b))

=hkv′(y)

=hk (fx1)x2 (x, y) �

Theorem: [Clairaut/Schwarz Theorem]

If moreover (fx1)x2 is continuous at (a, b) then (fx2)x1 (a, b) exists and

(fx2)x1 (a, b) = (fx1)x2 (a, b)

Fun Fact: Clairaut had 19 siblings, and published his first math pa-
per at 12 years old!

Proof: Let ε > 0 be given and A =: (fx1)x2 (a, b). By continuity, if h
and k are small enough, then for all (x, y) ∈ Q (rectangle) we have∣∣(fx1)x2 (x, y)− A

∣∣ < ε

Therefore by the Rectangle Lemma above, we have∣∣∣∣∆(f,Q)

hk
− A

∣∣∣∣ < ε

Now if we let k → 0 first, then we get
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∣∣∣∣(lim
k→0

∆(f,Q)

hk

)
− A

∣∣∣∣ ≤ ε

But
∆(f,Q)

hk
=

1

h

[(
f(a+ h, b+ k)− f(a+ h, b)

k

)
−
(
f(a, b+ k)− f(a, b)

k

)]
So as k → 0 this just tends to

fx2(a+h,b)−fx2(a,b)
h and hence∣∣∣∣fx2(a+ h, b)− fx2(a, b)

h
− A

∣∣∣∣ ≤ ε

Finally, if you let h→ 0, since this is true for all ε > 0 we get

(fx2)x1 (a, b) = A =: (fx1)x2 (a, b) �

Definition: In that case (unambiguous by Clairaut)

∂2f

∂x1∂x2
= fx1x2 = (fx1)x2 = (fx2)x1

Definition: f is C2 if f is C1 and all the second-order partial deriva-
tives are continuous.

2. The True Second-Derivative Test

Video: The True Second-Derivative Test

Definition: The Hessian of f is

D2f =
[

∂2f
∂xi∂xj

]
Note: If f is C2 then this matrix is symmetric

https://www.youtube.com/watch?v=9fagVI87AzY
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As an application of this, let’s state the true second derivative test for
max/min (not the fake version you learned in multivariable calculus)

The True Second-Derivative Test: Suppose f ′(a) = 0 for some a

(1) If all the eigenvalues of D2f(a) are > 0, f has a local min at a

(2) If all the eigenvalues of D2f(a) are < 0, f has a local max at a

(3) If the eigenvalues of D2f(a) are mixed (positive/neg) then f
has a saddle point at a

(4) Else the test is inconclusive

Example: f(x, y) = x3 − 3x+ 3xy2

Can show that f has a critical point at (1, 0) and

D2f =

[
fxx fxy
fyx fyy

]
=

[
6x 6y
6y 6x

]
⇒ D2f(1, 0) =

[
6 0
0 6

]
The eigenvalues are λ = 6 and λ = 6, which are positive, hence f has
a local min at (1, 0)

3. Differentiation of Integrals

Finally, let’s discuss the very delicate question of differentiation of in-
tegrals.

Question: When do we have

d

dt

∫ b

a

φ(x, t)dx =

∫ b

a

∂φ

∂t
(x, t)dx
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In general, this is not true (see homework), but we can show that this
does hold provided ∂φ

∂t is continuous

Fact: Suppose φ : [a, b]× [c, d]→ R and ∂φ
∂t are continuous, and if

f(t) =

∫ b

a

φ(x, t)dx then f ′(t) =

∫ b

a

∂φ

∂t
(x, t)dx

Proof:

STEP 1: Fix t and consider the difference quotient

ψ(x, s) =
φ(x, s)− φ(x, t)

s− t
Claim:

lim
s→t

ψ(x, s) =
∂φ

∂t
(x, t)

This convergence is uniform in x (independent of x)

Why? Let ε > 0 be given. By uniform continuity of ∂φ
∂t there is δ > 0

such that if |s− t| < δ and all x, we have∣∣∣∣∂φ∂t (x, s)− ∂φ

∂t
(x, t)

∣∣∣∣ < ε

With that δ > 0, if |s− t| < δ, then by the Mean-Value Theorem
applied to φ(x, ·), there is a u between s and t such that

ψ(x, s) =
∂φ

∂t
(x, u)

But in particular |u− t| < δ (u is closer to t than s is) and so∣∣∣∣∂φ∂t (x, u)− ∂φ

∂t
(x, t)

∣∣∣∣ < ε⇒
∣∣∣∣ψ(x, s)− ∂φ

∂t
(x, t)

∣∣∣∣ < εX
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STEP 2: By definition of f , we have

f(s)− f(t)

s− t
=

∫ b

a

ψ(x, s)dx

But since ψ(x, s)→ ∂φ
∂t (x, t) as s→ t, uniformly in x, we get

lim
s→t

f(s)− f(t)

s− t
= lim

s→t

∫ b

a

ψ(x, s)dx =

∫ b

a

∂φ

∂t
(x, t)dx

(We can put the limit inside the integral by uniform convergence)

This implies that f ′(t) exists as a limit and f ′(t) =
∫ b
a
∂φ
∂t (x, t)dx �

Note: There’s a related identity called the Leibniz rule for integrals
that is often used in practice

d

dt

∫ t

a

φ(x, t)dx = φ(t, t) +

∫ t

a

∂φ

∂t
(x, t)dx

4. An Interesting Example

Let f(t) =

∫ ∞
−∞

e−x
2

cos(xt)dx

In this section we will find an explicit formula for f

Claim # 1:

f ′(t) = g(t) where g(t) =

∫ ∞
−∞
−xe−x2 sin(xt)dx

(This is what you expect if you naively differentiate under the integral)
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Proof: First of all, notice that for all α and β we have

cos(α + β)− cos(α) =

∫ α+β

α

− sin(t)dt

cos(α + β)− cos(α)

β
=

1

β

∫ α+β

α

− sin(t)dt

cos(α + β)− cos(α)

β
+ sin(α) =

1

β

∫ α+β

α

sin(α)− sin(t)dt

(Here we used that sin(α) is constant)

If β > 0 and using |sin(x)− sin(y)| ≤ |x− y| and α− t ≤ 0 we get∣∣∣∣cos(α + β)− cos(α)

β
+ sin(α)

∣∣∣∣ =

∣∣∣∣1β
∫ α+β

α

sin(α)− sin(t)dt

∣∣∣∣
≤ 1

|β|

∫ α+β

α

|sin(α)− sin(t)| dt

≤1

β

∫ α+β

α

|α− t| dt

=
1

β

[
(t− α)2

2

]α+β
α

=
1

β

(
β2

2

)
=
β

2

A similar formula holds if β < 0 and so∣∣∣∣cos(α + β)− cos(α)

β
+ sin(α)

∣∣∣∣ ≤ |β|
Now apply the above with α = xt and β = xh and use the definitions
of f and g to get∣∣∣∣f(t+ h)− f(t)

h
− g(t)

∣∣∣∣ ≤ |h|(∫ ∞
−∞

x2e−x
2

dx

)
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Therefore, letting h→ 0 we obtain that f ′(t) = g(t) X

Claim # 2: f(t) =
√
πe−

t2

4

Proof: Integrate f(t) =
∫∞
−∞ e

−x2 cos(xt)dx by parts with du = cos(xt)

and v = e−x
2

to get

f(t) = −
∫ ∞
−∞
−2xe−x

2

(
sin(xt)

t

)
dx = −2

(
g(t)

t

)
tf(t) =− 2g(t)

tf(t) =− 2f ′(t) (Since f ′ = g)

f ′(t)

f(t)
=− t

2

(ln |f(t)|)′ =− t

2

ln |f(t)| =− t2

4
+ C

|f(t)| =eC e−
t2

4

f(t) =±eC︸︷︷︸
C

e−
t2

4 ⇒ f(t) = Ce−
t2

4

C = f(0) =

∫ ∞
−∞

e−x
2

cos(x0)dx =

∫ ∞
−∞

e−x
2

dx =
√
π

Therefore f(t) =
√
πe−

t2

4
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