LECTURE 18: UNIFORM CONTINUITY

1. Image of an interval

Video: Image of an interval
Because the Intermediate Value Theorem, it is interesting to figure out what happens when you apply a function to an interval.

Notation:

I is an interval, such as $I=(0,1)$ or $[1,2)$ or $[2,3]$ or $(3, \infty)$ or even \mathbb{R}

Definition:

If I is an interval then the image of f of I (or the range of f) is

$$
f(I)=\{f(x) \mid x \in I\}
$$

Date: Thursday, October 28, 2021.

Example 1:

If $f(x)=x^{2}$ and $I=(-2,2)$ then

$$
f(I)=\left\{x^{2} \mid x \in(-2,2)\right\}=[0,4)
$$

Example 2:

If $f(x)=3$ and I is any nonempty interval, then

$$
f(I)=\{3\}
$$

Notice that in each of those examples, $f(I)$ is either a point or an interval. It turns out this is always true:

Fact:

If f is continuous, then $f(I)$ is an interval (or a single point)

2. Continuous Functions are Monotonic

Video: Continuity and Monotonicity

Here's another truly amazing fact about continuous functions: Continuous one-to-one functions must be either increasing or decreasing!

Definition:

f is one-to-one if and only if

$$
x \neq y \Rightarrow f(x) \neq f(y)
$$

(Different inputs give you different outputs)

Definition:

f is (strictly) increasing if $a<b \Rightarrow f(a)<f(b)$
f is (strictly) decreasing if $a<b \Rightarrow f(a)>f(b)$
In either case, f is (strictly) monotonic

Fact:

If $f: I \rightarrow \mathbb{R}$ is one-to-one and continuous, then f must be monotonic

Intuitively, this makes sense: Suppose f is not monotonic. Then, f goes up and down (or down and up) and cannot be one-to-one.

There's a fun application of this on the homework.
3. f^{-1} IS CONTINUOUS

Video: f^{-1} is continuous

Finally, let's state the incredible fact that if a real-valued f is continuous, then f^{-1} is continuous as well. This explains the fact why $\sqrt{x}, \tan ^{-1}(x)$, or even $\ln (x)$ are continuous.

Definition:

If $f: I \rightarrow f(I)$ is one-to-one, $f^{-1}: f(I) \rightarrow I$ is defined by

$$
f(x)=y \Leftrightarrow f^{-1}(y)=x
$$

In other words, if f as a flight from x to y, then f^{-1} is the return flight from y to $x . f^{-1}$ undoes whatever f does.

Theorem:

If $f: I \rightarrow f(I)$ is one-to-one and continuous, then $f^{-1}: f(I) \rightarrow I$ is continuous as well

4. Uniform Continuity

Video: Uniform Continuity

Now let's talk about a new and improved version of continuity, called uniform continuity

Recall:

f is continuous at x_{0} if for all $\epsilon>0$ there is $\delta>0$ such that for all x, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$

Important Observation: δ may or may not depend on x_{0}.
Example 1: If $f(x)=4 x+3$, then $\delta=\frac{\epsilon}{4}$
Example 2: If $f(x)=2 x^{2}+1$, then $\delta=\min \left\{1, \frac{\epsilon}{2\left(2\left|x_{0}\right|+1\right)}\right\}$, which depends on x_{0}

Upshot: If δ does not depend on x_{0}, then f is called uniformly continuous:

Definition:

f is uniformly continuous on a set S if for all $\epsilon>0$ there is $\delta>$
0 such that, for all $x, y \in S$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$

Even though the two definitions look identical, the main difference is that in uniform continuity, δ does not depend on x or y : There is a universal δ that works for all x and y.

Non-Example: $f(x)=\frac{1}{x}$ is not uniformly continuous on $S=(0,1)$ because δ depends on where you are: Near $1, \delta$ doesn't need to be small in order to have $|f(x)-f(y)|<\epsilon$. But near 0 , then δ needs to be extremely small in order to guarantee that $|f(x)-f(y)|<\epsilon$:

Careful: The set S matters. For example $f(x)=\frac{1}{x}$ is uniformly continuous on $[2, \infty)$ but $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$ (see Examples below)

5. Example 1: The Basics

Video: Example 1: The Basics

Example 1:

Show $f(x)=x^{2}$ is uniformly continuous on $[-1,3]$
Show: for all $\epsilon>0$ there is $\delta>0$ such that for all $x, y \in[-1,3]$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$

STEP 1: Scratchwork

$$
|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x-y||x+y| \leq|x-y|(|x|+|y|)
$$

Note: The $|x-y|$ term is good, so we need to control the $|x|+|y|$ term.
Since $x, y \in[-1,3]$ we have $|x| \leq 3$ and $|y| \leq 3$, and therefore $|x|+|y| \leq$ $3+3=6$

$$
\text { Hence }|x-y| \underbrace{(|x|+|y|)}_{6} \leq 6|x-y|<\epsilon \Rightarrow|x-y|<\frac{\epsilon}{6}
$$

Which suggests to let $\delta=\frac{\epsilon}{6}$ (independent of x and y)

STEP 2: Actual Proof

Let $\epsilon>0$ be given, and let $\delta=\frac{\epsilon}{6}$
Then if $x, y \in[-1,3]$, then $|x| \leq 3$ and $|y| \leq 3$ and therefore

$$
\begin{aligned}
|f(x)-f(y)|=|x-y||x+y| & \leq|x-y|(|x|+|y|) \\
& \leq|x-y|(3+3)=6|x-y| \\
& <6\left(\frac{\epsilon}{6}\right) \\
& =\epsilon \checkmark
\end{aligned}
$$

Hence f is uniformly continuous on $[-1,3]$
6. EXAMPLE 2: $\frac{1}{x^{2}}$ IS Uniformly CONTINUOUS

Video: Example 2: $\frac{1}{x^{2}}$

Example 2:

Show $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on $[2, \infty)$

Show: for all $\epsilon>0$ there is $\delta>0$ such that for all $x, y \in[2, \infty)$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$

STEP 1: Scratchwork

$$
|f(x)-f(y)|=\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right|=\left|\frac{y^{2}-x^{2}}{x^{2} y^{2}}\right|=\frac{|y-x||y+x|}{x^{2} y^{2}}=|y-x|\left(\frac{y+x}{x^{2} y^{2}}\right)
$$

(In the last line, we used $x, y \geq 2$, so $x, y>0$ and therefore $y+x>0$)
Here we just need to make the $\frac{y+x}{x^{2} y^{2}}$ term constant

$$
\text { However: } \frac{y+x}{x^{2} y^{2}}=\frac{y}{x^{2} y^{2}}+\frac{x}{x^{2} y^{2}}=\frac{1}{x^{2}(y)}+\frac{1}{x\left(y^{2}\right)}
$$

But since $x, y \geq 2$, we have $\frac{1}{x} \leq \frac{1}{2}$ and $\frac{1}{y} \leq \frac{1}{2}$ and therefore

$$
\frac{1}{x^{2}(y)}+\frac{1}{x\left(y^{2}\right)} \leq \frac{1}{2^{2}(2)}+\frac{1}{2\left(2^{2}\right)}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}
$$

Hence we get

$$
|y-x|\left(\frac{y+x}{x^{2} y^{2}}\right) \leq|y-x|\left(\frac{1}{4}\right)=\frac{|y-x|}{4}<\epsilon \Rightarrow|x-y|<4 \epsilon
$$

Which suggests to let $\delta=4 \epsilon$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, and let $\delta=4 \epsilon$.
Then if $x, y \in[2, \infty)$, then $\frac{1}{x} \leq \frac{1}{2}$ and $\frac{1}{y} \leq \frac{1}{2}$ and therefore

$$
\begin{aligned}
|f(x)-f(y)|=|y-x|\left(\frac{x+y}{x^{2} y^{2}}\right) & \leq|y-x|\left(\frac{1}{x\left(y^{2}\right)}+\frac{1}{x^{2}(y)}\right) \\
& \leq|y-x|\left(\frac{1}{8}+\frac{1}{8}\right) \\
& =\frac{|y-x|}{4} \\
& <\frac{4 \epsilon}{4}=\epsilon \checkmark
\end{aligned}
$$

Hence f is uniformly continuous on $[2, \infty)$
Let's now discuss some neat properties of uniform continuity.

7. Uniform Continuity on $[a, b]$

Video: Uniform Continuity on $[a, b]$
First, let's prove the (unbelievable) fact that continuous functions on $[a, b]$ are in fact uniformly continuous

Fact:

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous on $[a, b]$

This, for example, gives us a 2 second way of doing Example 1: x^{2} continuous on $[-1,3]$, so it is automatically uniformly continuous

Note: This theorem is NOT true for open intervals (a, b) or infinite intervals like $[2, \infty)$, but we can replace $[a, b]$ by any compact set.

Proof:

STEP 1: Suppose not, that is f is continuous but not uniformly continuous on $[a, b]$

Then there is $\epsilon>0$ such that for all $\delta>0$ there are $x, y \in[a, b]$ with $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon$.

Then, for all $n \in \mathbb{N}$, with $\delta=\frac{1}{n}$, there are $x_{n}, y_{n} \in[a, b]$ with $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$

$$
\delta=1 / n
$$

STEP 2: Let's focus on the sequence $\left(x_{n}\right)$
Since $\left(x_{n}\right)$ is a sequence in $[a, b],\left(x_{n}\right)$ is bounded. Therefore, by Bolzano-Weierstraß, there is a subsequence $\left(x_{n_{k}}\right)$ that converges to some $x_{0} \in[a, b]$

By assumption, $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ for all n, so $\left|x_{n_{k}}-y_{n_{k}}\right|<\frac{1}{n_{k}}$ for all k as well. Since $x_{n_{k}} \rightarrow x_{0}$, from this it follows that $y_{n_{k}} \rightarrow x_{0}$ as well.

STEP 3: Since $x_{n_{k}} \rightarrow x_{0}$ and f is continuous, we get $f\left(x_{n_{k}}\right) \rightarrow$ $f\left(x_{0}\right)$. And since $y_{n_{k}} \rightarrow x_{0}$ and f is continuous, we get $f\left(y_{n_{k}}\right) \rightarrow$ $f\left(x_{0}\right)$. Therefore letting $k \rightarrow \infty$ in $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \epsilon$, we get $\left|f\left(x_{0}\right)-f\left(x_{0}\right)\right| \geq \epsilon$, so $0 \geq \epsilon>0$, which is a contradiction

Hence f is uniformly continuous on $[a, b]$

8. Optional: Not Uniformly Continuous

Video: Example 3: Not Uniformly Continuous
Just like you can only appreciate light when you see darkness, let's now discuss a function is not uniformly continuous:

Example 3:

Show $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$

What does it mean to be not uniformly continuous? For this, let's recall the definition of uniform continuity:

Uniformly Continuous: For all $\epsilon>0$ there is $\delta>0$ such that for all $x, y \in(0,1)$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$

Not uniform continuity is just the negation of the above
Not Uniformly Continuous: There is $\epsilon>0$ such that for all $\delta>0$ there are $x, y \in(0,1)$ such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon$

In other words, we need to find ϵ such that, no matter what δ we can find two evil x and y such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon$.

STEP 1: Scratchwork

Let ϵ TBA, let $\delta>0$ be given.
To find x, y, let's proceed as usual:

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right|=\frac{|y-x|}{x y} \stackrel{?}{\geq} \epsilon
$$

(Here we used $x, y>0$ since $x, y \in(0,1)$)

STEP 2: WLOG, assume $y<x$, then $\frac{1}{y}>\frac{1}{x}$, hence

$$
\frac{|y-x|}{x y}=\left(\frac{|y-x|}{x}\right)\left(\frac{1}{y}\right) \geq\left(\frac{|y-x|}{x}\right)\left(\frac{1}{x}\right)=\frac{|y-x|}{x^{2}} \stackrel{?}{\geq} \epsilon
$$

STEP 3: Let $a=:|y-x|>0$
Note that since $|y-x|<\delta$, we have $a<\delta$
Note that if we know that a and x are, then we can figure out what y is because

$$
\begin{aligned}
|y-x|=a & \Rightarrow y-x= \pm a \\
& \Rightarrow y=x \pm a \\
& \Rightarrow y=x-a \text { or } y=x+a
\end{aligned}
$$

But since $y<x$, we get $y=x-a$.
STEP 4: Using $|y-x|=a$, we get

$$
\frac{|y-x|}{x^{2}}=\frac{a}{x^{2}} \geq \epsilon \Rightarrow x^{2} \leq \frac{a}{\epsilon} \Rightarrow x \leq \sqrt{\frac{a}{\epsilon}}
$$

Let

$$
x=\sqrt{\frac{a}{\epsilon}} \text { and } y=\sqrt{\frac{a}{\epsilon}}-a
$$

Upshot: If we know what a and ϵ are, then we know that x and y are (and we would be done)

STEP 5: Find a
For this, we need to verify that, with x and y as above, we have $x, y \in(0,1)$.

But since $\epsilon>0$ and $a>0$, we get $x>0$, and moreover

$$
x<1 \Leftrightarrow \sqrt{\frac{a}{\epsilon}}<1 \Leftrightarrow \frac{a}{\epsilon}<1 \Leftrightarrow a<\epsilon
$$

This tells us that we must choose a such that $a<\epsilon$ and, in that case, we have $0<x<1 \checkmark$

Now for y, first of all, since $a<\epsilon$,

$$
y=\sqrt{\frac{a}{\epsilon}}-a \leq \sqrt{\frac{a}{\epsilon}}<1 \checkmark
$$

And

$$
y>0 \Leftrightarrow \sqrt{\frac{a}{\epsilon}}-a>0 \Leftrightarrow a<\sqrt{\frac{a}{\epsilon}} \Leftrightarrow a^{2}<\frac{a}{\epsilon} \Leftrightarrow a<\frac{1}{\epsilon}
$$

If $a<\frac{1}{\epsilon}$, you get $y>0$ and therefore $0<y<1 \checkmark$
Note: The miracle is that all of the above works no matter what ϵ is, so the proof actually works for any $\epsilon>0$

STEP 5: Actual Proof

Let $\epsilon>0$ be whatever you want (for example $\epsilon=1$ works)
Let $\delta>0$ be given
Let $a>0$ with $a<\min \left\{\delta, \epsilon, \frac{1}{\epsilon}\right\}$ and let $x=\sqrt{\frac{\epsilon}{a}}$ and $y=\sqrt{\frac{\epsilon}{a}}-a$
Then, since $a<\epsilon$ and $a<\frac{1}{\epsilon}$, we get $x, y \in(0,1)$.
Moreover

$$
|x-y|=\left|\sqrt{\frac{\epsilon}{a}}-\left(\sqrt{\frac{\epsilon}{a}}-a\right)\right|=a<\delta
$$

But

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|y-x|}{x y} \geq \frac{|y-x|}{x^{2}}=\frac{a}{\left(\sqrt{\frac{a}{\epsilon}}\right)^{2}}=\frac{\epsilon a}{a}=\epsilon \checkmark
$$

Hence $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$

