
LECTURE 18: UNIFORM CONTINUITY (I)

1. Image of an interval

Video: Image of an interval

Because the Intermediate Value Theorem, it is interesting to figure out
what happens when you apply a function to an interval.

Notation:

I is an interval, such as I = (0, 1) or [1, 2) or [2, 3] or (3,∞) or
even R

Definition:

If I is an interval then the image of f of I (or the range of f) is

f(I) = {f(x) | x ∈ I}
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https://youtu.be/UOeqID3pWCo
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Example 1:

If f(x) = x2 and I = (−2, 2) then

f(I) =
{
x2 | x ∈ (−2, 2)

}
= [0, 4)

Example 2:

If f(x) = 3 and I is any nonempty interval, then

f(I) = {3}
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Notice that in each of those examples, f(I) is either a point or an
interval. It turns out this is always true:

Fact:

If f is continuous, then f(I) is an interval (or a single point)

2. Continuous Functions are Monotonic

Video: Continuity and Monotonicity

Here’s another truly amazing fact about continuous functions: Con-
tinuous one-to-one functions must be either increasing or decreasing!

Definition:

f is one-to-one if and only if

x ̸= y ⇒ f(x) ̸= f(y)

(Different inputs give you different outputs)

https://youtu.be/vK2GJgXUb2A
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Definition:

f is (strictly) increasing if a < b ⇒ f(a) < f(b)

f is (strictly) decreasing if a < b ⇒ f(a) > f(b)

In either case, f is (strictly) monotonic

Fact:

If f : I → R is one-to-one and continuous, then f must be mono-
tonic

Intuitively, this makes sense: Suppose f is not monotonic. Then, f
goes up and down (or down and up) and cannot be one-to-one.

There’s a fun application of this on the homework.

3. f−1 is continuous

Video: f−1 is continuous

https://youtu.be/CCa66RpxgQM
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Finally, let’s state the incredible fact that if a real-valued f is con-
tinuous, then f−1 is continuous as well. This explains the fact why√
x, tan−1(x), or even ln(x) are continuous.

Definition:

If f : I → f(I) is one-to-one, f−1 : f(I) → I is defined by

f(x) = y ⇔ f−1(y) = x

In other words, if f as a flight from x to y, then f−1 is the return flight
from y to x. f−1 undoes whatever f does.

Theorem:

If f : I → f(I) is one-to-one and continuous, then f−1 : f(I) → I
is continuous as well
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4. Uniform Continuity

Video: Uniform Continuity

Now let’s talk about a new and improved version of continuity, called
uniform continuity

Recall:

f is continuous at x0 if for all ϵ > 0 there is δ > 0 such that for
all x, if |x− x0| < δ, then |f(x)− f(x0)| < ϵ

Important Observation: δ may or may not depend on x0.

Example 1: If f(x) = 4x+ 3, then δ = ϵ
4

Example 2: If f(x) = 2x2 + 1, then δ = min
{
1, ϵ

2(2|x0|+1)

}
, which

depends on x0

Upshot: If δ does not depend on x0, then f is called uniformly
continuous:

Definition:

f is uniformly continuous on a set S if for all ϵ > 0 there is δ >
0 such that, for all x, y ∈ S, if |x− y| < δ, then |f(x)− f(y)| < ϵ

https://youtu.be/PA0EJHYymLE
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Even though the two definitions look identical, the main difference is
that in uniform continuity, δ does not depend on x or y: There is a
universal δ that works for all x and y.
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Non-Example: f(x) = 1
x is not uniformly continuous on S = (0, 1)

because δ depends on where you are: Near 1, δ doesn’t need to be
small in order to have |f(x)− f(y)| < ϵ. But near 0, then δ needs to
be extremely small in order to guarantee that |f(x)− f(y)| < ϵ:

Careful: The set S matters. For example f(x) = 1
x is uniformly

continuous on [2,∞) but f(x) = 1
x is not uniformly continuous on

(0, 1) (see Examples below)

5. Example 1: The Basics

Video: Example 1: The Basics

https://youtu.be/7qn8ovvCyUU
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Example 1:

Show f(x) = x2 is uniformly continuous on [−1, 3]

Show: for all ϵ > 0 there is δ > 0 such that for all x, y ∈ [−1, 3], if
|x− y| < δ, then |f(x)− f(y)| < ϵ

STEP 1: Scratchwork

|f(x)− f(y)| =
∣∣x2 − y2

∣∣ = |x− y| |x+ y| ≤ |x− y| (|x|+ |y|)

Note: The |x− y| term is good, so we need to control the |x|+|y| term.

Since x, y ∈ [−1, 3] we have |x| ≤ 3 and |y| ≤ 3, and therefore |x|+|y| ≤
3 + 3 = 6

Hence |x− y| (|x|+ |y|)︸ ︷︷ ︸
6

≤ 6 |x− y| < ϵ ⇒ |x− y| < ϵ

6

Which suggests to let δ = ϵ
6 (independent of x and y)

STEP 2: Actual Proof

Let ϵ > 0 be given, and let δ = ϵ
6

Then if x, y ∈ [−1, 3], then |x| ≤ 3 and |y| ≤ 3 and therefore

|f(x)− f(y)| = |x− y| |x+ y| ≤ |x− y| (|x|+ |y|)
≤ |x− y| (3 + 3) = 6 |x− y|

<6
( ϵ
6

)
=ϵ✓
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Hence f is uniformly continuous on [−1, 3] □

6. Example 2: 1
x2

is uniformly continuous

Video: Example 2: 1
x2

Example 2:

Show f(x) = 1
x2 is uniformly continuous on [2,∞)

Show: for all ϵ > 0 there is δ > 0 such that for all x, y ∈ [2,∞), if
|x− y| < δ, then |f(x)− f(y)| < ϵ

STEP 1: Scratchwork

https://youtu.be/9Su9SIoPbSU
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|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣ = ∣∣∣∣y2 − x2

x2y2

∣∣∣∣ = |y − x| |y + x|
x2y2

= |y − x|
(
y + x

x2y2

)

(In the last line, we used x, y ≥ 2, so x, y > 0 and therefore y+ x > 0)

Here we just need to make the y+x
x2y2 term constant

However:
y + x

x2y2
=

y

x2y2
+

x

x2y2
=

1

x2 (y)
+

1

x (y2)

But since x, y ≥ 2, we have 1
x ≤ 1

2 and 1
y ≤ 1

2 and therefore

1

x2 (y)
+

1

x (y2)
≤ 1

22(2)
+

1

2(22)
=

1

8
+

1

8
=

1

4

Hence we get

|y − x|
(
y + x

x2y2

)
≤ |y − x|

(
1

4

)
=

|y − x|
4

< ϵ ⇒ |x− y| < 4ϵ

Which suggests to let δ = 4ϵ

STEP 2: Actual Proof

Let ϵ > 0 be given, and let δ = 4ϵ.

Then if x, y ∈ [2,∞), then 1
x ≤ 1

2 and 1
y ≤ 1

2 and therefore
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|f(x)− f(y)| = |y − x|
(
x+ y

x2y2

)
≤ |y − x|

(
1

x(y2)
+

1

x2(y)

)
≤ |y − x|

(
1

8
+

1

8

)
=
|y − x|

4

<
4ϵ

4
= ϵ✓

Hence f is uniformly continuous on [2,∞) □

Let’s now discuss some neat properties of uniform continuity.

7. Uniform Continuity on [a, b]

Video: Uniform Continuity on [a, b]

First, let’s prove the (unbelievable) fact that continuous functions on
[a, b] are in fact uniformly continuous

Fact:

If f : [a, b] → R is continuous, then f is uniformly continuous on
[a, b]

This, for example, gives us a 2 second way of doing Example 1: x2

continuous on [−1, 3], so it is automatically uniformly continuous

https://youtu.be/vo-KzQ9WRpA
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Note: This theorem is NOT true for open intervals (a, b) or infinite
intervals like [2,∞), but we can replace [a, b] by any compact set.

Proof:

STEP 1: Suppose not, that is f is continuous but not uniformly con-
tinuous on [a, b]

Then there is ϵ > 0 such that for all δ > 0 there are x, y ∈ [a, b] with
|x− y| < δ but |f(x)− f(y)| ≥ ϵ.

Then, for all n ∈ N, with δ = 1
n , there are xn, yn ∈ [a, b] with

|xn − yn| < 1
n but |f(xn)− f(yn)| ≥ ϵ

STEP 2: Let’s focus on the sequence (xn)

Since (xn) is a sequence in [a, b], (xn) is bounded. Therefore, by
Bolzano-Weierstraß, there is a subsequence (xnk

) that converges to
some x0 ∈ [a, b]
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By assumption, |xn − yn| < 1
n for all n, so |xnk

− ynk
| < 1

nk
for all k as

well. Since xnk
→ x0, from this it follows that ynk

→ x0 as well.

STEP 3: Since xnk
→ x0 and f is continuous, we get f(xnk

) →
f(x0). And since ynk

→ x0 and f is continuous, we get f(ynk
) →

f(x0). Therefore letting k → ∞ in |f(xnk
)− f(ynk

)| ≥ ϵ, we get
|f(x0)− f(x0)| ≥ ϵ, so 0 ≥ ϵ > 0, which is a contradiction

Hence f is uniformly continuous on [a, b] □
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8. Optional: Not Uniformly Continuous

Video: Example 3: Not Uniformly Continuous

Just like you can only appreciate light when you see darkness, let’s
now discuss a function is not uniformly continuous:

Example 3:

Show f(x) = 1
x is not uniformly continuous on (0, 1)

https://youtu.be/QfwO8CgPPss
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What does it mean to be not uniformly continuous? For this, let’s
recall the definition of uniform continuity:

Uniformly Continuous: For all ϵ > 0 there is δ > 0 such that for
all x, y ∈ (0, 1), if |x− y| < δ, then |f(x)− f(y)| < ϵ

Not uniform continuity is just the negation of the above

Not Uniformly Continuous: There is ϵ > 0 such that for all δ > 0
there are x, y ∈ (0, 1) such that |x− y| < δ but |f(x)− f(y)| ≥ ϵ

In other words, we need to find ϵ such that, no matter what δ we can
find two evil x and y such that |x− y| < δ but |f(x)− f(y)| ≥ ϵ.

STEP 1: Scratchwork

Let ϵ TBA, let δ > 0 be given.

To find x, y, let’s proceed as usual:

|f(x)− f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ = ∣∣∣∣y − x

xy

∣∣∣∣ = |y − x|
xy

?
≥ ϵ

(Here we used x, y > 0 since x, y ∈ (0, 1))
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STEP 2: WLOG, assume y < x, then 1
y > 1

x , hence

|y − x|
xy

=

(
|y − x|

x

)(
1

y

)
≥

(
|y − x|

x

)(
1

x

)
=

|y − x|
x2

?
≥ ϵ

STEP 3: Let a =: |y − x| > 0

Note that since |y − x| < δ, we have a < δ

Note that if we know that a and x are, then we can figure out what y
is because

|y − x| = a ⇒y − x = ±a

⇒y = x± a

⇒y = x− a or y = x+ a

But since y < x, we get y = x− a .

STEP 4: Using |y − x| = a, we get

|y − x|
x2

=
a

x2
≥ ϵ ⇒ x2 ≤ a

ϵ
⇒ x ≤

√
a

ϵ

Let

x =

√
a

ϵ
and y =

√
a

ϵ
− a

Upshot: If we know what a and ϵ are, then we know that x and y
are (and we would be done)

STEP 5: Find a

For this, we need to verify that, with x and y as above, we have
x, y ∈ (0, 1).
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But since ϵ > 0 and a > 0, we get x > 0, and moreover

x < 1 ⇔
√

a

ϵ
< 1 ⇔ a

ϵ
< 1 ⇔ a < ϵ

This tells us that we must choose a such that a < ϵ and, in that case,
we have 0 < x < 1 ✓

Now for y, first of all, since a < ϵ,

y =

√
a

ϵ
− a ≤

√
a

ϵ
< 1✓

And

y > 0 ⇔
√

a

ϵ
− a > 0 ⇔ a <

√
a

ϵ
⇔ a2 <

a

ϵ
⇔ a <

1

ϵ

If a < 1
ϵ , you get y > 0 and therefore 0 < y < 1 ✓

Note: The miracle is that all of the above works no matter what ϵ is,
so the proof actually works for any ϵ > 0

STEP 5: Actual Proof

Let ϵ > 0 be whatever you want (for example ϵ = 1 works)

Let δ > 0 be given

Let a > 0 with a < min
{
δ, ϵ, 1ϵ

}
and let x =

√
ϵ
a and y =

√
ϵ
a − a

Then, since a < ϵ and a < 1
ϵ , we get x, y ∈ (0, 1).

Moreover
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|x− y| =
∣∣∣∣√ ϵ

a
−

(√
ϵ

a
− a

)∣∣∣∣ = a < δ

But

|f(x)− f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ = |y − x|
xy

≥ |y − x|
x2

=
a(√
a
ϵ

)2 =
ϵa

a
= ϵ✓

Hence f(x) = 1
x is not uniformly continuous on (0, 1) □
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