LECTURE 18: THE LEBESGUE MEASURE

Welcome to the world of measure theory, where we'll learn the correct way of finding the size of a set ${ }^{[1}$

1. RECtangles

The idea is to build more complicated sets from simple ones, the most basic unit being a rectangle:

Definition: If $R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ is a rectangle in \mathbb{R}^{d} then

$$
|R|=:\left(b_{1}-a_{1}\right) \cdots\left(b_{d}-a_{d}\right)
$$

Definition: A union of rectangles is almost disjoint if the interiors of the rectangles are disjoint

This just means they're disjoint but their sides may overlap (see picture in lecture)

Fact: If R is the almost disjoint union of finitely many rectangles, $R=\bigcup_{k=1}^{N} R_{k}$ then

$$
|R|=\sum_{k=1}^{N}\left|R_{k}\right|
$$

[^0]Proof: Consider the grid formed by extending the sides of the rectangles R_{1}, \ldots, R_{N} (see picture in lecture)

We thereby obtain finitely many rectangles $\widetilde{R_{1}}, \cdots, \widetilde{R_{M}}$ (for some M) and a partition J_{1}, \ldots, J_{N} of $\{1, \ldots, M\}$ such that the following unions are almost disjoint

$$
R=\bigcup_{j=1}^{M} \tilde{R}_{j} \text { and } R_{k}=\bigcup_{j \in J_{k}} \tilde{R}_{j}
$$

(in the picture in lecture, we have $R_{1}=\tilde{R}_{1} \cup \tilde{R}_{2}$ and $J_{1}=\{1,2\}$)

$$
\text { Hence }|R|=\sum_{j=1}^{M}\left|\tilde{R}_{j}\right|=\sum_{k=1}^{N}\left(\sum_{j \in J_{k}}\left|\tilde{R}_{j}\right|\right)=\sum_{k=1}^{N}\left|R_{k}\right|
$$

The first equality follows ${ }^{2}$ since the \tilde{R}_{j} partition the rectangle R, the follows since the J_{k} partition $\{1, \cdots, M\}$, and the last one follows since the \tilde{R}_{j} partition R_{k}

Corollary: If R and $R_{1}, \cdots R_{N}$ are rectangles and $R \subseteq \bigcup_{k=1}^{N} R_{k}$ then

$$
|R| \leq \sum_{k=1}^{N}\left|R_{k}\right|
$$

Proof: Same proof as the above, but notice that the sets corresponding to the J_{k} are not disjoint any more.

2. The Exterior Measure

[^1]For more complicated sets, the idea is to cover the set with closed cubes, similar to what you did when you discussed compactness.

Definition: If E is any subset of \mathbb{R}^{d} then the exterior measure of E is

$$
m_{\star}(E)=: \inf \sum_{j=1}^{\infty}\left|Q_{j}\right|
$$

Where the infimum is taken over all countable coverings $E \subseteq \bigcup_{j=1}^{\infty} Q_{j}$ with closed cubes.

Note: With this definition, $m_{\star}(E)$ always exists, no matter how crazy E is, although it could be ∞.

Note: We're using cubes because they're simple enough to deal with. But it would be totally ok in theory to use rectangles, and even balls.

Example/Fact: If Q is a closed cube, then $m_{\star}(Q)=|Q|$
Since Q covers itself we have $m_{\star}(Q) \leq|Q|$
For the reverse inequality, let $Q \subseteq \bigcup_{j=1}^{\infty} Q_{j}$ be an arbitrary covering by cubes, and show $|Q| \leq \sum_{j=1}^{\infty}\left|Q_{j}\right|$, because then take the inf on the right-hand-side.

Let $\epsilon>0$ be given, then for each j find a slightly bigger open cube $S_{j} \supseteq Q_{j}$ such that $\left|S_{j}\right| \leq(1+\epsilon)\left|Q_{j}\right|$ (so S_{j} is bigger, but not too big)

Notice $\bigcup_{j=1}^{\infty} S_{j}$ covers Q (compact) so by compactness, we can find a finite sub-covering, which we relabel as $Q \subseteq \bigcup_{j=1}^{N} S_{j}$.

Then by the above rectangle fact we have

$$
|Q| \leq \sum_{j=1}^{N}\left|S_{j}\right| \stackrel{\text { DEF }}{\leq} \sum_{j=1}^{N}(1+\epsilon)\left|Q_{j}\right| \leq(1+\epsilon) \sum_{j=1}^{N}\left|Q_{j}\right| \leq(1+\epsilon) \sum_{j=1}^{\infty}\left|Q_{j}\right|
$$

Since $\epsilon>0$ is arbitrary we find $|Q| \leq \sum_{j=1}^{\infty}\left|Q_{j}\right|$ as desired
Note: The same result holds if Q is an open cube (since Q is covered by \bar{Q}) and if R is a rectangle (in that case you form a grid formed by cubes). Finally $m_{\star}\left(\mathbb{R}^{d}\right)=\infty$ since \mathbb{R}^{d} includes arbitrarily large cubes.

3. Properties of the Outer Measure

First of all, from the definition of m_{\star} as an inf, we have

Property 0:

For all $\epsilon>0$ there is a covering $E \subseteq \bigcup_{j=1}^{\infty} Q_{j}$ such that $\sum_{j=1}^{\infty}\left|Q_{j}\right| \leq m_{\star}(E)+\epsilon$
Note: We will use this many many times. We're basically saying $\sum_{j=1}^{\infty}\left|Q_{j}\right|$ is not much bigger than $m_{\star}(E)$

Property 1: (Monotonicity) If $E_{1} \subseteq E_{2}$ then $m_{\star}\left(E_{1}\right) \leq m_{\star}\left(E_{2}\right)$
This is because a covering of E_{2} by cubes is also a covering of E_{1}, so there are more sets to consider in the inf of E_{1}

In particular, every bounded set has finite outer measure, since you that set is included in a large cube.

Property 2: (Countable sub-additivity)

$$
\text { If } E=\bigcup_{j=1}^{\infty} E_{j} \text { then } m_{\star}(E) \leq \sum_{j=1}^{\infty} m_{\star}\left(E_{j}\right)
$$

This is kind of like a triangle inequality for the outer measure
Proof: This method of proof is called a $\frac{\epsilon}{2^{n}}$ argument and appears over and over again in measure theory.

WLOG, assume $m_{\star}\left(E_{j}\right)<\infty$ for each j and let $\epsilon>0$ be given
Then there is a covering $E_{j} \subseteq \bigcup_{k=1}^{\infty} Q_{k, j}$ by closed cubes such that

$$
\sum_{k=1}^{\infty}\left|Q_{k, j}\right| \leq m_{\star}\left(E_{j}\right)+\frac{\epsilon}{2^{j}}
$$

But then $\bigcup_{j, k=1}^{\infty} Q_{k, j}$ is a covering of E by closed cubes, and hence

$$
m_{\star}(E) \stackrel{\mathrm{inf}}{\leq} \sum_{j, k=1}^{\infty}\left|Q_{k, j}\right|=\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|Q_{k, j}\right| \leq \sum_{j=1}^{\infty}\left(m_{\star}\left(E_{j}\right)+\frac{\epsilon}{2^{j}}\right) \stackrel{\text { Geom. }}{=}\left(\sum_{j=1}^{\infty} m_{\star}\left(E_{j}\right)\right)+\epsilon
$$

Since $\epsilon>0$ is arbitrary, we are done
Property 3: (Open sets)

$$
m_{\star}(E)=\inf m_{\star}(O)
$$

Where the inf is taken over all open sets O containing E.
So not just all cube-coverings, but literally all open set coverings!

Proof: Since $E \subseteq O$ we have $m_{\star}(E) \leq m_{\star}(O)$ and taking the inf over O we have $m_{\star}(E) \leq \inf m_{\star}(O) \checkmark$

For the reverse inequality, let $\epsilon>0$ be given and choose a covering of closed cubes Q_{j} such that $\sum_{j=1}^{\infty}\left|Q_{j}\right| \leq m_{\star}(E)+\frac{\epsilon}{2}$

Let $S_{j} \supseteq Q_{j}$ be an open cube containing Q_{j} such that $\left|S_{j}\right| \leq\left|Q_{j}\right|+\frac{\epsilon}{2^{j+1}}$ then $O=: \bigcup_{j=1}^{\infty} S_{j}$ is open and so by countable sub-additivity

$$
\begin{aligned}
m_{\star}(O) & \leq \sum_{j=1}^{\infty} m_{\star}\left(S_{j}\right)=\sum_{j=1}^{\infty}\left|S_{j}\right| \stackrel{\text { DEF }}{\leq} \sum_{j=1}^{\infty}\left|Q_{j}\right|+\frac{\epsilon}{2^{j+1}} \stackrel{\text { GEOM }}{=} \sum_{j=1}^{\infty}\left|Q_{j}\right|+\frac{\epsilon}{2} \\
& \leq m_{\star}(E)+\frac{\epsilon}{2}+\frac{\epsilon}{2}=m_{\star}(E)+\epsilon \checkmark
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary, we have $\inf m_{\star}(O) \leq m_{\star}(E)$
Warning: If E_{1} and E_{2} are disjoint, then in general we do not have

$$
m_{\star}\left(E_{1} \cup E_{2}\right) \neq m_{\star}\left(E_{1}\right)+m_{\star}\left(E_{2}\right)
$$

It is true provides E_{1} and E_{2} are a positive distance from each other
Definition: $d\left(E_{1}, E_{2}\right)=\inf \left\{|x-y|, x \in E_{1}, y \in E_{2}\right\}$
Property 4: If $E=E_{1} \cup E_{2}$ and $d\left(E_{1}, E_{2}\right)>0$ then

$$
m_{\star}\left(E_{1} \cup E_{2}\right)=m_{\star}\left(E_{1}\right)+m_{\star}\left(E_{2}\right)
$$

Proof: We already know $m_{\star}(E) \leq m_{\star}\left(E_{1}\right)+m_{\star}\left(E_{2}\right)$ by countable sub-additivity

For the reverse inequality, choose $\delta>0$ be so that $d\left(E_{1}, E_{2}\right)>\delta>0$.

Let $\epsilon>0$ be given and choose a covering Q_{j} so that $\sum_{j=1}^{\infty}\left|Q_{j}\right| \leq$ $m_{\star}(E)+\epsilon$

After sub-dividing the cubes if necessary, assume that each Q_{j} has diagonal less than δ.

Since E_{1} and E_{2} are a distance at least δ apart, each Q_{j} can intersect at most one of the two sets E_{1} or E_{2}. Let J_{1} and J_{2} be the set of those indices, so

$$
\begin{gathered}
E_{1} \subseteq \bigcup_{j \in J_{1}} Q_{j} \text { and } E_{2} \subseteq \bigcup_{j \in J_{2}} Q_{j} \\
m_{\star}\left(E_{1}\right)+m_{\star}\left(E_{2}\right) \leq \sum_{j \in J_{1}}\left|Q_{j}\right|+\sum_{j \in J_{2}}\left|Q_{j}\right|=\sum_{j=1}^{\infty}\left|Q_{j}\right| \leq m_{\star}(E)+\epsilon
\end{gathered}
$$

We are done since $\epsilon>0$ was arbitrary
Property 5: If E is the countable union of almost disjoint cubes, $E=\bigcup_{j=1}^{\infty} Q_{j}$ then

$$
m_{\star}(E)=\sum_{j=1}^{\infty}\left|Q_{j}\right|
$$

Proof: We only need to show \geq since \leq follows from countable subadditivity

Let $\epsilon>0$ be given and let $S_{j} \subseteq Q_{j}$ be a closed cube strictly contained in Q_{j} such that $\left|Q_{j}\right| \leq\left|S_{j}\right|+\frac{\epsilon}{2^{j}}$

Then for every N, the cubes $S_{1}, S_{2}, \cdots S_{N}$ are disjoint, hence of finite distance from each other, and therefore by the above, we get

$$
m_{\star}\left(\bigcup_{j=1}^{N} S_{j}\right)=\sum_{j=1}^{N}\left|S_{j}\right| \stackrel{\text { DEF }}{\geq} \sum_{j=1}^{N}\left(\left|Q_{j}\right|-\frac{\epsilon}{2^{j}}\right) \stackrel{\mathrm{GEOM}}{\geq} \sum_{j=1}^{N}\left|Q_{j}\right|-\epsilon
$$

Since $\bigcup_{j=1}^{N} S_{j} \subseteq E$ we get that for every $N, m_{\star}(E)$ is even bigger, so

$$
m_{\star}(E) \geq \sum_{j=1}^{N}\left|Q_{j}\right|-\epsilon
$$

Letting $N \rightarrow \infty$ we then get $m_{\star}(E) \geq \sum_{j=1}^{\infty}\left|Q_{j}\right|-\epsilon$ and we're done because ϵ is arbitrary

Note: It can be shown that any open set is the countable union of almost disjoint cubes 3^{3}, so this would actually give us a procedure of calculating the outer measure of any open set.

4. The Lebesgue Measure

Even though the outer measure m_{\star} works for all sets, in practice we would like to exclude some pathological sets that are "not measurable."

Definition: A subset E in \mathbb{R}^{d} is Lebesgue mesurable if for every $\epsilon>0$ there is an open set O with $E \subseteq O$ and

$$
m_{\star}(O-E) \leq \epsilon
$$

In other words, E can be well-approximated with open sets
Definition: If E is measurable, then the Lebesgue Measure $m(E)$

[^2]$$
\text { is simply } m(E)=: m_{\star}(E)
$$

So the Lebesgue measure is just the outer measure, but restricted to a special class of sets

Property 1: Every open set in \mathbb{R}^{d} is measurable
Why? Just let $O=E$

[^0]: Date: Wednesday, August 3, 2022.
 ${ }^{1}$ We will follow the presentation of Stein and Shakarchi's Real Analysis book (Book 3), which gives a more hands-on approach to measure theory compared to the one in Rudin

[^1]: ${ }^{2}$ If you're not convinced, use the definition of $|R|$ and $\left|R_{j}\right|$ in terms of sums of products of numbers

[^2]: $3_{\text {See Stein }}$ and Shakarchi Theorem 1.4 in Chapter 1

