
LECTURE 18: THE LEBESGUE MEASURE

Welcome to the world of measure theory, where we’ll learn the correct
way of finding the size of a set1

1. Rectangles

The idea is to build more complicated sets from simple ones, the most
basic unit being a rectangle:

Definition: If R = [a1, b1]×[a2, b2]×· · ·×[ad, bd] is a rectangle in Rd then

|R| =: (b1 − a1) · · · (bd − ad)

Definition: A union of rectangles is almost disjoint if the interiors
of the rectangles are disjoint

This just means they’re disjoint but their sides may overlap (see pic-
ture in lecture)

Fact: If R is the almost disjoint union of finitely many rectangles,
R =

⋃N
k=1Rk then

|R| =
N∑
k=1

|Rk|

Date: Wednesday, August 3, 2022.
1We will follow the presentation of Stein and Shakarchi’s Real Analysis book (Book 3), which

gives a more hands-on approach to measure theory compared to the one in Rudin

1
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Proof: Consider the grid formed by extending the sides of the rectan-
gles R1, . . . , RN (see picture in lecture)

We thereby obtain finitely many rectangles R̃1, · · · , R̃M (for some M)
and a partition J1, . . . , JN of {1, . . . ,M} such that the following unions
are almost disjoint

R =
M⋃
j=1

R̃j and Rk =
⋃
j∈Jk

R̃j

(in the picture in lecture, we have R1 = R̃1 ∪ R̃2 and J1 = {1, 2})

Hence |R| =
M∑
j=1

∣∣∣R̃j

∣∣∣ =
N∑
k=1

∑
j∈Jk

∣∣∣R̃j

∣∣∣
 =

N∑
k=1

|Rk|

The first equality follows2 since the R̃j partition the rectangle R, the
follows since the Jk partition {1, · · · ,M}, and the last one follows since
the R̃j partition Rk �

Corollary: If R and R1, · · ·RN are rectangles and R ⊆
⋃N
k=1Rk then

|R| ≤
N∑
k=1

|Rk|

Proof: Same proof as the above, but notice that the sets corresponding
to the Jk are not disjoint any more.

2. The Exterior Measure

2If you’re not convinced, use the definition of |R| and |Rj | in terms of sums of products of
numbers
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For more complicated sets, the idea is to cover the set with closed
cubes, similar to what you did when you discussed compactness.

Definition: If E is any subset of Rd then the exterior measure of
E is

m?(E) =: inf
∞∑
j=1

|Qj|

Where the infimum is taken over all countable coverings E ⊆
⋃∞
j=1Qj

with closed cubes.

Note: With this definition, m?(E) always exists, no matter how crazy
E is, although it could be ∞.

Note: We’re using cubes because they’re simple enough to deal with.
But it would be totally ok in theory to use rectangles, and even balls.

Example/Fact: If Q is a closed cube, then m?(Q) = |Q|

Since Q covers itself we have m?(Q) ≤ |Q|

For the reverse inequality, let Q ⊆
⋃∞
j=1Qj be an arbitrary covering

by cubes, and show |Q| ≤
∑∞

j=1 |Qj|, because then take the inf on the
right-hand-side.

Let ε > 0 be given, then for each j find a slightly bigger open cube
Sj ⊇ Qj such that |Sj| ≤ (1 + ε) |Qj| (so Sj is bigger, but not too big)

Notice
⋃∞
j=1 Sj covers Q (compact) so by compactness, we can find a

finite sub-covering, which we relabel as Q ⊆
⋃N
j=1 Sj.

Then by the above rectangle fact we have
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|Q| ≤
N∑
j=1

|Sj|
DEF
≤

N∑
j=1

(1 + ε) |Qj| ≤ (1 + ε)
N∑
j=1

|Qj| ≤ (1 + ε)
∞∑
j=1

|Qj|

Since ε > 0 is arbitrary we find |Q| ≤
∑∞

j=1 |Qj| as desired �

Note: The same result holds if Q is an open cube (since Q is covered
by Q) and if R is a rectangle (in that case you form a grid formed by
cubes). Finally m?(Rd) =∞ since Rd includes arbitrarily large cubes.

3. Properties of the Outer Measure

First of all, from the definition of m? as an inf, we have

Property 0:

For all ε > 0 there is a covering E ⊆
∞⋃
j=1

Qj such that
∞∑
j=1

|Qj| ≤ m?(E)+ε

Note: We will use this many many times. We’re basically saying∑∞
j=1 |Qj| is not much bigger than m?(E)

Property 1: (Monotonicity) If E1 ⊆ E2 then m?(E1) ≤ m?(E2)

This is because a covering of E2 by cubes is also a covering of E1, so
there are more sets to consider in the inf of E1

In particular, every bounded set has finite outer measure, since you
that set is included in a large cube.
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Property 2: (Countable sub-additivity)

If E =
∞⋃
j=1

Ej then m?(E) ≤
∞∑
j=1

m?(Ej)

This is kind of like a triangle inequality for the outer measure

Proof: This method of proof is called a ε
2n argument and appears over

and over again in measure theory.

WLOG, assume m?(Ej) <∞ for each j and let ε > 0 be given

Then there is a covering Ej ⊆
⋃∞
k=1Qk,j by closed cubes such that

∞∑
k=1

|Qk,j| ≤ m?(Ej) +
ε

2j

But then
⋃∞
j,k=1Qk,j is a covering of E by closed cubes, and hence

m?(E)
inf
≤

∞∑
j,k=1

|Qk,j| =
∞∑
j=1

∞∑
k=1

|Qk,j| ≤
∞∑
j=1

(
m?(Ej) +

ε

2j

)
Geom.

=

( ∞∑
j=1

m?(Ej)

)
+ε

Since ε > 0 is arbitrary, we are done �

Property 3: (Open sets)

m?(E) = inf m?(O)

Where the inf is taken over all open sets O containing E.

So not just all cube-coverings, but literally all open set coverings!
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Proof: Since E ⊆ O we have m?(E) ≤ m?(O) and taking the inf over
O we have m?(E) ≤ inf m?(O) X

For the reverse inequality, let ε > 0 be given and choose a covering of
closed cubes Qj such that

∑∞
j=1 |Qj| ≤ m?(E) + ε

2

Let Sj ⊇ Qj be an open cube containing Qj such that |Sj| ≤ |Qj|+ ε
2j+1

then O =:
⋃∞
j=1 Sj is open and so by countable sub-additivity

m?(O) ≤
∞∑
j=1

m?(Sj) =
∞∑
j=1

|Sj|
DEF
≤

∞∑
j=1

|Qj|+
ε

2j+1

GEOM
=

∞∑
j=1

|Qj|+
ε

2

≤m?(E) +
ε

2
+
ε

2
= m?(E) + εX

Since ε > 0 was arbitrary, we have inf m?(O) ≤ m?(E) �

Warning: If E1 and E2 are disjoint, then in general we do not have

m?(E1 ∪ E2) 6= m?(E1) +m?(E2)

It is true provides E1 and E2 are a positive distance from each other

Definition: d(E1, E2) = inf {|x− y| , x ∈ E1, y ∈ E2}

Property 4: If E = E1 ∪ E2 and d(E1, E2) > 0 then

m?(E1 ∪ E2) = m?(E1) +m?(E2)

Proof: We already know m?(E) ≤ m?(E1) + m?(E2) by countable
sub-additivity

For the reverse inequality, choose δ > 0 be so that d(E1, E2) > δ > 0.
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Let ε > 0 be given and choose a covering Qj so that
∑∞

j=1 |Qj| ≤
m?(E) + ε

After sub-dividing the cubes if necessary, assume that each Qj has di-
agonal less than δ.

Since E1 and E2 are a distance at least δ apart, each Qj can intersect
at most one of the two sets E1 or E2. Let J1 and J2 be the set of those
indices, so

E1 ⊆
⋃
j∈J1

Qj and E2 ⊆
⋃
j∈J2

Qj

m?(E1) +m?(E2) ≤
∑
j∈J1

|Qj|+
∑
j∈J2

|Qj| =
∞∑
j=1

|Qj| ≤ m?(E) + ε

We are done since ε > 0 was arbitrary

Property 5: If E is the countable union of almost disjoint cubes,
E =

⋃∞
j=1Qj then

m?(E) =
∞∑
j=1

|Qj|

Proof: We only need to show ≥ since ≤ follows from countable sub-
additivity

Let ε > 0 be given and let Sj ⊆ Qj be a closed cube strictly contained
in Qj such that |Qj| ≤ |Sj|+ ε

2j

Then for every N , the cubes S1, S2, · · ·SN are disjoint, hence of finite
distance from each other, and therefore by the above, we get
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m?

(
N⋃
j=1

Sj

)
=

N∑
j=1

|Sj|
DEF
≥

N∑
j=1

(
|Qj| −

ε

2j

) GEOM
≥

N∑
j=1

|Qj| − ε

Since
⋃N
j=1 Sj ⊆ E we get that for every N , m?(E) is even bigger, so

m?(E) ≥
N∑
j=1

|Qj| − ε

Letting N → ∞ we then get m?(E) ≥
∑∞

j=1 |Qj| − ε and we’re done
because ε is arbitrary �

Note: It can be shown that any open set is the countable union of
almost disjoint cubes3, so this would actually give us a procedure of
calculating the outer measure of any open set.

4. The Lebesgue Measure

Even though the outer measure m? works for all sets, in practice we
would like to exclude some pathological sets that are “not measurable.”

Definition: A subset E in Rd is Lebesgue mesurable if for every
ε > 0 there is an open set O with E ⊆ O and

m?(O − E) ≤ ε

In other words, E can be well-approximated with open sets

Definition: If E is measurable, then the Lebesgue Measure m(E)

3See Stein and Shakarchi Theorem 1.4 in Chapter 1
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is simply m(E) =: m?(E)

So the Lebesgue measure is just the outer measure, but restricted to a
special class of sets

Property 1: Every open set in Rd is measurable

Why? Just let O = E
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