
OPTIONAL: PROOFS OF FACTS

Here are the proofs of the facts stated in lecture.

1. Image of an interval

Video: Image of an interval

Theorem 1:

If f is continuous, then f(I) is an interval (or a single point)

Proof: Let J =: f(I) and let m =: inf(J) and M =: sup(J)
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https://youtu.be/UOeqID3pWCo
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Case 1: m = M , then J = {m} is a single point ✓

Case 2: m < M .

Claim: J contains the interval (m,M)

Then we would be done because we would then have either J = (m,M)
or J = [m,M) or J = (m,M ] or J = [m,M ], depending on whether or
not m = inf(J) and M = sup(J) are in J or not (here the endpoints
may be infinite).

Proof of Claim: Let c ∈ (m,M), and show c ∈ J .

By assumption m < c < M . Since c > m = inf(J), by definition of
inf, there is y0 ∈ J such that y0 < c, and since c < M = sup(J), there
is y1 ∈ J such that c < y1.
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Therefore we get y0 < c < y1.

Since y0 ∈ J = f(I), by definition of f(I), there is a ∈ I such that
y0 = f(a). Similarly there is b ∈ I such that y1 = f(b).

Since f is continuous and c is between f(a) and f(b), by the Intermedi-
ate Value Theorem, there is x between a ∈ I and b ∈ I (so x ∈ I since I
is an interval) such that f(x) = c, but this means that c ∈ f(I) = J □
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2. Continuous Functions are Monotonic

Video: Continuity and Monotonicity

Theorem 2:

If f : I → R is one-to-one and continuous, then f must be mono-
tonic

Proof: Suppose f is continuous and one-to-one.

STEP 1:

Claim: For all a < b < c

Either f(a) < f(b) < f(c) or f(a) > f(b) > f(c)

Suppose not, then for some a < b < c we have

(1) f(b) ≥ f(a) and f(b) ≥ f(c), or

(2) f(b) ≤ f(a) and f(b) ≤ f(c)

https://youtu.be/vK2GJgXUb2A
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(The picture illustrates the cases where f(c) > f(a), but the cases
where f(c) < f(a) are similar)

WLOG, assume (1), that is f(b) ≥ f(a) and f(b) ≥ f(c) (the other
case is similar)

Since f is one-to-one, we have f(b) ̸= f(a) and f(b) ̸= f(c), hence (1)
becomes f(b) > f(a) and f(b) > f(c).

Let y be a number that is both (strictly) between f(a) and f(b) and
between f(b) and f(c).

Since f is continuous, by the IVT on (a, b), there must be x1 in (a, b)
such that f(x1) = y. And by the IVT on (b, c) there must be x2 in
(b, c) with f(x2) = y
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But then f(x1) = f(x2) = y whereas x1 ̸= x2, which contradicts f
being one-to-one ⇒⇐ ✓

STEP 2: Therefore, for all a < b < c, either f(a) < f(b) < f(c) or
f(a) > f(b) > f(c).

Problem: In theory have a function f , we have f(a) < f(b) < f(c)
for some a < b < c, and f(a) > f(b) > f(c) for other a < b < c, which
is not monotonic, as in the following picture:

Essentially, we need to rule out one of the two possibilities.

Fix a0 < b0 in I (Think of a0 and b0 as helper numbers because they
help us determine if f is increasing or decreasing. In the sin(x) exam-
ple above, a0 = 0 and b0 =

π
2 )

Since f is one-to-one, we have f(a0) ̸= f(b0), hence either f(a0) < f(b0)
or f(a0) > f(b0).

Assume WLOG f(a0) < f(b0) (the other case is similar but would give
you f decreasing)
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Goal: Show f is increasing.

STEP 3: Let x ∈ I

Claim:
x < a0 ⇒f(x) < f(a0)

x > a0 ⇒f(x) > f(a0)
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(This is not quite the same as f being increasing increasing, since a0
is fixed here)

Case 1: x < a0

Then, since x < a0 < b0 and f(a0) < f(b0), by STEP 1, we must have
f(x) < f(a0) < f(b0) so f(x) < f(a0) ✓

Case 2: x > a0
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Case 2a: If a0 < x < b0, then, similar to Case 1, we get f(a0) <
f(x) < f(b0) so f(x) > f(a0) ✓

Case 2b: If x = b0, then we get f(x) = f(b0) > f(a0) ✓

Case 2c: If x > b0, then since a0 < b0 < x and therefore f(a0) <
f(b0) < f(x), so f(x) > f(a0) ✓

Therefore we get f(x) > f(a0) □

STEP 4:

Claim: f is increasing

Suppose x1 < x2 and show f(x1) < f(x2)
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Case 1: x1 < x2 < a0

Since x2 < a0 then STEP 3 implies f(x2) < f(a0), and therefore from
STEP 1, have f(x1) < f(x2) < f(a0), and hence f(x1) < f(x2) ✓

Case 2: x1 ≤ a0 ≤ x2

Since x1 ≤ a0, we get
1 f(x1) ≤ f(a0), and since x2 ≥ a0 we get f(x2) ≥

f(a0), and therefore f(x1) ≤ f(a0) ≤ f(x2), hence f(x1) ≤ f(x2).
Moreover, since x1 ̸= x2 and f is one-to-one we have f(x1) ̸= f(x2).
Hence f(x1) < f(x2) ✓

Case 3: a0 < x1 < x2.

Since a0 < x1 we get f(a0) < f(x1) from STEP 3, and therefore, since
a0 < x1 < x2, we get f(a0) < f(x1) < f(x2) and hence f(x1) < f(x2)✓

In either case, we get that f is increasing □

3. f−1 is continuous

Video: f−1 is continuous

Theorem 3:

If f : I → f(I) is one-to-one and continuous, then f−1 : f(I) → I
is continuous as well

1If x1 < a0 then f(x1) < f(a0) and if x1 = a0 we get f(x1) = f(a0) in which case the inequality
holds

https://youtu.be/CCa66RpxgQM
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Lemma:

If f : I → f(I) is increasing then f−1 : f(I) → I is also increasing

Proof of Lemma: Suppose y1, y2 ∈ f(I) are such that y1 < y2. We
need to show f−1(y1) < f−1(y2)

By definition of f(I), there is x1 ∈ I with y1 = f(x1) and there is
x2 ∈ I with y2 = f(x2). In particular x1 = f−1(y1) and x2 = f−1(y2)

Now if x1 ≥ x2, since f is increasing, we would have f(x1) ≥ f(x2)
and therefore, by definition y1 ≥ y2 ⇒⇐

Therefore we must have x1 < x2, that is f
−1(y1) < f−1(y2).
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We have shown that y1 < y2 ⇒ f−1(y1) < f−1(y2), and therefore f−1

is increasing □

Proof of Theorem: Since f is continuous, from the previous section,
f is either increasing or decreasing, so WLOG, assume f is increasing.

To simplify notation, let J = f(I) and g = f−1

Goal: Prove that for all x0 ∈ J , g is continuous at x0

STEP 1: First of all, since I is an interval and f is continuous, then
J = f(I) is also interval (from last time)

For simplicity, assume that x0 is not an endpoint of J (for example if
J = [2, 3], assume x0 is neither 2 or 3). The general case is similar.

Claim: g(x0) is not an endpoint of I

Proof of Claim: Suppose not, and assume for example that g(x0) is
the left endpoint of I.

Let x ∈ J be arbitrary. Then g(x) ∈ I, and, since g(x0) is the left
endpoint of I, we must have g(x0) ≤ g(x)
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But then, since f is increasing and g = f−1, we get

f (g(x0)) ≤ f (g(x)) ⇒ x0 ≤ x

But then this means that x0 is the left endpoint of J , which is a con-
tradiction ⇒⇐ □

Since g(x0) is not an endpoint of I, it must be in the interior of I, and
so there exists r > 0 such that (g(x0)− r, g(x0) + r) ⊆ I
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STEP 2: Let ϵ > 0 be given, and assume ϵ so small that ϵ < r

Then, since ϵ < r and by STEP 1, we have:

[g(x0)− ϵ, g(x0) + ϵ] ⊆ (g(x0)− r, g(x0) + r) ⊆ I

However, since g(x0) − ϵ and g(x0) + ϵ are in I and g : J → I
is onto (since g is invertible), there are x1 and x2 in J such that
g(x0)− ϵ = g(x1) and g(x0) + ϵ = g(x2)
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Claim: x1 < x0 < x2

(This is at least true from the picture)
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This is because

g(x0)− ϵ < g(x0) < g(x0) + ϵ

⇒g(x1) < g(x0) < g(x2)

⇒f(g(x1)) < f(g(x0)) < f(g(x2)) (Since f is increasing)

⇒x1 < x0 < x2✓ (Since g = f−1)

STEP 3: Actual Proof

With ϵ as above, let δ = min {|x2 − x0| , |x1 − x0|}

Intuition: With this δ, any x that is δ−close to x0 is guaranteed to
be in the blue region above, and therefore g(x) is guaranteed to be in
the red/good region, so g(x) will be ϵ−close to g(x0)

Then if |x− x0| < δ, then by definition of δ, we get x1 < x < x2 and
therefore
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x1 < x < x2

⇒g(x1) < g(x) < g(x2) (Since g is increasing)

⇒g(x0)− ϵ < g(x) < g(x0) + ϵ (By definition of x1 and x2)

⇒− ϵ < g(x)− g(x0) < ϵ

⇒|g(x)− g(x0)| < ϵ

Therefore g = f−1 is continuous at x0 □
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