OPTIONAL: PROOFS OF FACTS

Here are the proofs of the facts stated in lecture.

1. Image of an interval

Video: Image of an interval

Theorem 1:

If f is continuous, then $f(I)$ is an interval (or a single point)
Proof: Let $J=: f(I)$ and let $m=: \inf (J)$ and $M=: \sup (J)$

Date: Thursday, October 28, 2021.

Case 1: $m=M$, then $J=\{m\}$ is a single point \checkmark
Case 2: $m<M$.

Claim: J contains the interval (m, M)

Then we would be done because we would then have either $J=(m, M)$ or $J=[m, M)$ or $J=(m, M]$ or $J=[m, M]$, depending on whether or not $m=\inf (J)$ and $M=\sup (J)$ are in J or not (here the endpoints may be infinite).

Proof of Claim: Let $c \in(m, M)$, and show $c \in J$.
By assumption $m<c<M$. Since $c>m=\inf (J)$, by definition of \inf, there is $y_{0} \in J$ such that $y_{0}<c$, and since $c<M=\sup (J)$, there is $y_{1} \in J$ such that $c<y_{1}$.

Therefore we get $y_{0}<c<y_{1}$.

Since $y_{0} \in J=f(I)$, by definition of $f(I)$, there is $a \in I$ such that $y_{0}=f(a)$. Similarly there is $b \in I$ such that $y_{1}=f(b)$.

Since f is continuous and c is between $f(a)$ and $f(b)$, by the Intermediate Value Theorem, there is x between $a \in I$ and $b \in I$ (so $x \in I$ since I is an interval) such that $f(x)=c$, but this means that $c \in f(I)=J$

2. Continuous Functions are Monotonic

Video: Continuity and Monotonicity

Theorem 2:

If $f: I \rightarrow \mathbb{R}$ is one-to-one and continuous, then f must be monotonic

Proof: Suppose f is continuous and one-to-one.
STEP 1:

Claim: For all $a<b<c$
Either $f(a)<f(b)<f(c)$ or $f(a)>f(b)>f(c)$

Suppose not, then for some $a<b<c$ we have
(1) $f(b) \geq f(a)$ and $f(b) \geq f(c)$, or
(2) $f(b) \leq f(a)$ and $f(b) \leq f(c)$

(The picture illustrates the cases where $f(c)>f(a)$, but the cases where $f(c)<f(a)$ are similar)

WLOG, assume (1), that is $f(b) \geq f(a)$ and $f(b) \geq f(c)$ (the other case is similar)

Since f is one-to-one, we have $f(b) \neq f(a)$ and $f(b) \neq f(c)$, hence (1) becomes $f(b)>f(a)$ and $f(b)>f(c)$.

Let y be a number that is both (strictly) between $f(a)$ and $f(b)$ and between $f(b)$ and $f(c)$.

Since f is continuous, by the IVT on (a, b), there must be x_{1} in (a, b) such that $f\left(x_{1}\right)=y$. And by the IVT on (b, c) there must be x_{2} in (b, c) with $f\left(x_{2}\right)=y$

But then $f\left(x_{1}\right)=f\left(x_{2}\right)=y$ whereas $x_{1} \neq x_{2}$, which contradicts f being one-to-one $\Rightarrow \Leftarrow \checkmark$

STEP 2: Therefore, for all $a<b<c$, either $f(a)<f(b)<f(c)$ or $f(a)>f(b)>f(c)$.

Problem: In theory have a function f, we have $f(a)<f(b)<f(c)$ for some $a<b<c$, and $f(a)>f(b)>f(c)$ for other $a<b<c$, which is not monotonic, as in the following picture:

Essentially, we need to rule out one of the two possibilities.
Fix $a_{0}<b_{0}$ in I (Think of a_{0} and b_{0} as helper numbers because they help us determine if f is increasing or decreasing. In the $\sin (x)$ example above, $a_{0}=0$ and $b_{0}=\frac{\pi}{2}$)

Since f is one-to-one, we have $f\left(a_{0}\right) \neq f\left(b_{0}\right)$, hence either $f\left(a_{0}\right)<f\left(b_{0}\right)$ or $f\left(a_{0}\right)>f\left(b_{0}\right)$.

Assume WLOG $f\left(a_{0}\right)<f\left(b_{0}\right)$ (the other case is similar but would give you f decreasing)

Goal: Show f is increasing.
STEP 3: Let $x \in I$

Claim:

$$
\begin{aligned}
& x<a_{0} \Rightarrow f(x)<f\left(a_{0}\right) \\
& x>a_{0} \Rightarrow f(x)>f\left(a_{0}\right)
\end{aligned}
$$

(This is not quite the same as f being increasing increasing, since a_{0} is fixed here)

Case 1: $x<a_{0}$

Then, since $x<a_{0}<b_{0}$ and $f\left(a_{0}\right)<f\left(b_{0}\right)$, by STEP 1 , we must have $f(x)<f\left(a_{0}\right)<f\left(b_{0}\right)$ so $f(x)<f\left(a_{0}\right) \checkmark$

Case 2: $x>a_{0}$

Case 2a: If $a_{0}<x<b_{0}$, then, similar to Case 1, we get $f\left(a_{0}\right)<$ $f(x)<f\left(b_{0}\right)$ so $f(x)>f\left(a_{0}\right) \checkmark$

Case 2b: If $x=b_{0}$, then we get $f(x)=f\left(b_{0}\right)>f\left(a_{0}\right) \checkmark$
Case 2c: If $x>b_{0}$, then since $a_{0}<b_{0}<x$ and therefore $f\left(a_{0}\right)<$ $f\left(b_{0}\right)<f(x)$, so $f(x)>f\left(a_{0}\right) \checkmark$

Therefore we get $f(x)>f\left(a_{0}\right)$

STEP 4:

Claim: f is increasing

Suppose $x_{1}<x_{2}$ and show $f\left(x_{1}\right)<f\left(x_{2}\right)$

Case 1: $x_{1}<x_{2}<a_{0}$
Since $x_{2}<a_{0}$ then STEP 3 implies $f\left(x_{2}\right)<f\left(a_{0}\right)$, and therefore from STEP 1, have $f\left(x_{1}\right)<f\left(x_{2}\right)<f\left(a_{0}\right)$, and hence $f\left(x_{1}\right)<f\left(x_{2}\right) \checkmark$

Case 2: $x_{1} \leq a_{0} \leq x_{2}$
Since $x_{1} \leq a_{0}$, we get ${ }^{1}$ f $f\left(x_{1}\right) \leq f\left(a_{0}\right)$, and since $x_{2} \geq a_{0}$ we get $f\left(x_{2}\right) \geq$ $f\left(a_{0}\right)$, and therefore $f\left(x_{1}\right) \leq f\left(a_{0}\right) \leq f\left(x_{2}\right)$, hence $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. Moreover, since $x_{1} \neq x_{2}$ and f is one-to-one we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Hence $f\left(x_{1}\right)<f\left(x_{2}\right) \checkmark$

Case 3: $a_{0}<x_{1}<x_{2}$.
Since $a_{0}<x_{1}$ we get $f\left(a_{0}\right)<f\left(x_{1}\right)$ from STEP 3 , and therefore, since $a_{0}<x_{1}<x_{2}$, we get $f\left(a_{0}\right)<f\left(x_{1}\right)<f\left(x_{2}\right)$ and hence $f\left(x_{1}\right)<f\left(x_{2}\right) \checkmark$

In either case, we get that f is increasing

3. f^{-1} IS CONTINUOUS

Video: f^{-1} is continuous

Theorem 3:

If $f: I \rightarrow f(I)$ is one-to-one and continuous, then $f^{-1}: f(I) \rightarrow I$ is continuous as well

[^0]
Lemma:

If $f: I \rightarrow f(I)$ is increasing then $f^{-1}: f(I) \rightarrow I$ is also increasing
Proof of Lemma: Suppose $y_{1}, y_{2} \in f(I)$ are such that $y_{1}<y_{2}$. We need to show $f^{-1}\left(y_{1}\right)<f^{-1}\left(y_{2}\right)$

By definition of $f(I)$, there is $x_{1} \in I$ with $y_{1}=f\left(x_{1}\right)$ and there is $x_{2} \in I$ with $y_{2}=f\left(x_{2}\right)$. In particular $x_{1}=f^{-1}\left(y_{1}\right)$ and $x_{2}=f^{-1}\left(y_{2}\right)$

Now if $x_{1} \geq x_{2}$, since f is increasing, we would have $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ and therefore, by definition $y_{1} \geq y_{2} \Rightarrow \Leftarrow$

Therefore we must have $x_{1}<x_{2}$, that is $f^{-1}\left(y_{1}\right)<f^{-1}\left(y_{2}\right)$.

We have shown that $y_{1}<y_{2} \Rightarrow f^{-1}\left(y_{1}\right)<f^{-1}\left(y_{2}\right)$, and therefore f^{-1} is increasing

Proof of Theorem: Since f is continuous, from the previous section, f is either increasing or decreasing, so WLOG, assume f is increasing.

To simplify notation, let $J=f(I)$ and $g=f^{-1}$
Goal: Prove that for all $x_{0} \in J, g$ is continuous at x_{0}
STEP 1: First of all, since I is an interval and f is continuous, then $J=f(I)$ is also interval (from last time)

For simplicity, assume that x_{0} is not an endpoint of J (for example if $J=[2,3]$, assume x_{0} is neither 2 or 3). The general case is similar.

Claim: $g\left(x_{0}\right)$ is not an endpoint of I

Proof of Claim: Suppose not, and assume for example that $g\left(x_{0}\right)$ is the left endpoint of I.

Let $x \in J$ be arbitrary. Then $g(x) \in I$, and, since $g\left(x_{0}\right)$ is the left endpoint of I, we must have $g\left(x_{0}\right) \leq g(x)$

But then, since f is increasing and $g=f^{-1}$, we get

$$
f\left(g\left(x_{0}\right)\right) \leq f(g(x)) \Rightarrow x_{0} \leq x
$$

But then this means that x_{0} is the left endpoint of J, which is a contradiction $\Rightarrow \Leftarrow$

Since $g\left(x_{0}\right)$ is not an endpoint of I, it must be in the interior of I, and so there exists $r>0$ such that $\left(g\left(x_{0}\right)-r, g\left(x_{0}\right)+r\right) \subseteq I$

STEP 2: Let $\epsilon>0$ be given, and assume ϵ so small that $\epsilon<r$
Then, since $\epsilon<r$ and by STEP 1, we have:

$$
\left[g\left(x_{0}\right)-\epsilon, g\left(x_{0}\right)+\epsilon\right] \subseteq\left(g\left(x_{0}\right)-r, g\left(x_{0}\right)+r\right) \subseteq I
$$

However, since $g\left(x_{0}\right)-\epsilon$ and $g\left(x_{0}\right)+\epsilon$ are in I and $g: J \rightarrow I$ is onto (since g is invertible), there are x_{1} and x_{2} in J such that $g\left(x_{0}\right)-\epsilon=g\left(x_{1}\right)$ and $g\left(x_{0}\right)+\epsilon=g\left(x_{2}\right)$

Claim: $x_{1}<x_{0}<x_{2}$
(This is at least true from the picture)

This is because

$$
\begin{aligned}
& g\left(x_{0}\right)-\epsilon<g\left(x_{0}\right)<g\left(x_{0}\right)+\epsilon \\
\Rightarrow & g\left(x_{1}\right)<g\left(x_{0}\right)<g\left(x_{2}\right) \\
\Rightarrow & f\left(g\left(x_{1}\right)\right)<f\left(g\left(x_{0}\right)\right)<f\left(g\left(x_{2}\right)\right) \quad \text { (Since } f \text { is increasing) } \\
\Rightarrow & \left.x_{1}<x_{0}<x_{2} \checkmark \quad \text { (Since } g=f^{-1}\right)
\end{aligned}
$$

STEP 3: Actual Proof

With ϵ as above, let $\delta=\min \left\{\left|x_{2}-x_{0}\right|,\left|x_{1}-x_{0}\right|\right\}$

Intuition: With this δ, any x that is δ-close to x_{0} is guaranteed to be in the blue region above, and therefore $g(x)$ is guaranteed to be in the red/good region, so $g(x)$ will be ϵ-close to $g\left(x_{0}\right)$

Then if $\left|x-x_{0}\right|<\delta$, then by definition of δ, we get $x_{1}<x<x_{2}$ and therefore

$$
\begin{aligned}
& x_{1}<x<x_{2} \\
\Rightarrow & g\left(x_{1}\right)<g(x)<g\left(x_{2}\right) \quad(\text { Since } g \text { is increasing) } \\
\Rightarrow & g\left(x_{0}\right)-\epsilon<g(x)<g\left(x_{0}\right)+\epsilon \quad\left(\text { By definition of } x_{1} \text { and } x_{2}\right) \\
\Rightarrow & -\epsilon<g(x)-g\left(x_{0}\right)<\epsilon \\
\Rightarrow & \left|g(x)-g\left(x_{0}\right)\right|<\epsilon
\end{aligned}
$$

Therefore $g=f^{-1}$ is continuous at x_{0}

[^0]: ${ }^{1}$ If $x_{1}<a_{0}$ then $f\left(x_{1}\right)<f\left(a_{0}\right)$ and if $x_{1}=a_{0}$ we get $f\left(x_{1}\right)=f\left(a_{0}\right)$ in which case the inequality holds

