OPTIONAL: PROOFS OF FACTS

Here are the proofs of the facts stated in lecture.

1. Image of an interval

Video: Image of an interval

Theorem 1:

If f is continuous, then f(I) is an interval (or a single point)

Proof: Let J =: f(I) and let $m =: \inf(J)$ and $M =: \sup(J)$

Date: Thursday, October 28, 2021.

Case 1: m = M, then $J = \{m\}$ is a single point \checkmark

Case 2: m < M.

Then we would be done because we would then have either J = (m, M)or J = [m, M) or J = (m, M] or J = [m, M], depending on whether or not $m = \inf(J)$ and $M = \sup(J)$ are in J or not (here the endpoints may be infinite).

Proof of Claim: Let $c \in (m, M)$, and show $c \in J$.

By assumption m < c < M. Since $c > m = \inf(J)$, by definition of inf, there is $y_0 \in J$ such that $y_0 < c$, and since $c < M = \sup(J)$, there is $y_1 \in J$ such that $c < y_1$.

Therefore we get $y_0 < c < y_1$.

Since $y_0 \in J = f(I)$, by definition of f(I), there is $a \in I$ such that $y_0 = f(a)$. Similarly there is $b \in I$ such that $y_1 = f(b)$.

Since f is continuous and c is between f(a) and f(b), by the Intermediate Value Theorem, there is x between $a \in I$ and $b \in I$ (so $x \in I$ since I is an interval) such that f(x) = c, but this means that $c \in f(I) = J$ \square

2. Continuous Functions are Monotonic

Video: Continuity and Monotonicity

Theorem 2:

If $f:I\to \mathbb{R}$ is one-to-one and continuous, then f must be monotonic

Proof: Suppose f is continuous and one-to-one.

STEP 1:

Suppose not, then for some a < b < c we have

(1) $f(b) \ge f(a)$ and $f(b) \ge f(c)$, or

(2)
$$f(b) \leq f(a)$$
 and $f(b) \leq f(c)$

(The picture illustrates the cases where f(c) > f(a), but the cases where f(c) < f(a) are similar)

WLOG, assume (1), that is $f(b) \ge f(a)$ and $f(b) \ge f(c)$ (the other case is similar)

Since f is one-to-one, we have $f(b) \neq f(a)$ and $f(b) \neq f(c)$, hence (1) becomes f(b) > f(a) and f(b) > f(c).

Let y be a number that is both (strictly) between f(a) and f(b) and between f(b) and f(c).

Since f is continuous, by the IVT on (a, b), there must be x_1 in (a, b) such that $f(x_1) = y$. And by the IVT on (b, c) there must be x_2 in (b, c) with $f(x_2) = y$

But then $f(x_1) = f(x_2) = y$ whereas $x_1 \neq x_2$, which contradicts f being one-to-one $\Rightarrow \Leftarrow \checkmark$

STEP 2: Therefore, for all a < b < c, either f(a) < f(b) < f(c) or f(a) > f(b) > f(c).

Problem: In theory have a function f, we have f(a) < f(b) < f(c) for some a < b < c, and f(a) > f(b) > f(c) for other a < b < c, which is not monotonic, as in the following picture:

Essentially, we need to rule out one of the two possibilities.

Fix $a_0 < b_0$ in I (Think of a_0 and b_0 as *helper* numbers because they help us determine if f is increasing or decreasing. In the $\sin(x)$ example above, $a_0 = 0$ and $b_0 = \frac{\pi}{2}$)

Since f is one-to-one, we have $f(a_0) \neq f(b_0)$, hence either $f(a_0) < f(b_0)$ or $f(a_0) > f(b_0)$.

Assume WLOG $f(a_0) < f(b_0)$ (the other case is similar but would give you f decreasing)

Goal: Show f is increasing.

STEP 3: Let $x \in I$

Claim:	
	$x < a_0 \Rightarrow f(x) < f(a_0)$
	$x > a_0 \Rightarrow f(x) > f(a_0)$

(This is *not quite* the same as f being increasing increasing, since a_0 is fixed here)

Case 1: $x < a_0$

Then, since $x < a_0 < b_0$ and $f(a_0) < f(b_0)$, by STEP 1, we must have $f(x) < f(a_0) < f(b_0)$ so $f(x) < f(a_0) \checkmark$

Case 2: $x > a_0$

Case 2a: If $a_0 < x < b_0$, then, similar to Case 1, we get $f(a_0) < f(x) < f(b_0)$ so $f(x) > f(a_0) \checkmark$

Case 2b: If $x = b_0$, then we get $f(x) = f(b_0) > f(a_0) \checkmark$

Case 2c: If $x > b_0$, then since $a_0 < b_0 < x$ and therefore $f(a_0) < f(b_0) < f(x)$, so $f(x) > f(a_0) \checkmark$

Therefore we get $f(x) > f(a_0)$

STEP 4:

Claim: f is increasing

Suppose $x_1 < x_2$ and show $f(x_1) < f(x_2)$

Case 1: $x_1 < x_2 < a_0$

Since $x_2 < a_0$ then STEP 3 implies $f(x_2) < f(a_0)$, and therefore from STEP 1, have $f(x_1) < f(x_2) < f(a_0)$, and hence $f(x_1) < f(x_2) \checkmark$

Case 2: $x_1 \le a_0 \le x_2$

Since $x_1 \leq a_0$, we get $f(x_1) \leq f(a_0)$, and since $x_2 \geq a_0$ we get $f(x_2) \geq f(a_0)$, and therefore $f(x_1) \leq f(a_0) \leq f(x_2)$, hence $f(x_1) \leq f(x_2)$. Moreover, since $x_1 \neq x_2$ and f is one-to-one we have $f(x_1) \neq f(x_2)$. Hence $f(x_1) < f(x_2) \checkmark$

Case 3: $a_0 < x_1 < x_2$.

Since $a_0 < x_1$ we get $f(a_0) < f(x_1)$ from STEP 3, and therefore, since $a_0 < x_1 < x_2$, we get $f(a_0) < f(x_1) < f(x_2)$ and hence $f(x_1) < f(x_2) \checkmark$

In either case, we get that f is increasing

3. f^{-1} IS CONTINUOUS

Video: f^{-1} is continuous

Theorem 3:

If $f: I \to f(I)$ is one-to-one and continuous, then $f^{-1}: f(I) \to I$ is continuous as well

¹If $x_1 < a_0$ then $f(x_1) < f(a_0)$ and if $x_1 = a_0$ we get $f(x_1) = f(a_0)$ in which case the inequality holds

Lemma:

If $f: I \to f(I)$ is increasing then $f^{-1}: f(I) \to I$ is also increasing

Proof of Lemma: Suppose $y_1, y_2 \in f(I)$ are such that $y_1 < y_2$. We need to show $f^{-1}(y_1) < f^{-1}(y_2)$

By definition of f(I), there is $x_1 \in I$ with $y_1 = f(x_1)$ and there is $x_2 \in I$ with $y_2 = f(x_2)$. In particular $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$

Now if $x_1 \ge x_2$, since f is increasing, we would have $f(x_1) \ge f(x_2)$ and therefore, by definition $y_1 \ge y_2 \Rightarrow \Leftarrow$

Therefore we must have $x_1 < x_2$, that is $f^{-1}(y_1) < f^{-1}(y_2)$.

We have shown that $y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$, and therefore f^{-1} is increasing

Proof of Theorem: Since f is continuous, from the previous section, f is either increasing or decreasing, so WLOG, assume f is increasing.

To simplify notation, let J = f(I) and $g = f^{-1}$

Goal: Prove that for all $x_0 \in J$, g is continuous at x_0

STEP 1: First of all, since I is an interval and f is continuous, then J = f(I) is also interval (from last time)

For simplicity, assume that x_0 is not an endpoint of J (for example if J = [2, 3], assume x_0 is neither 2 or 3). The general case is similar.

Claim: $g(x_0)$ is not an endpoint of I

Proof of Claim: Suppose not, and assume for example that $g(x_0)$ is the left endpoint of I.

Let $x \in J$ be arbitrary. Then $g(x) \in I$, and, since $g(x_0)$ is the left endpoint of I, we must have $g(x_0) \leq g(x)$

But then, since f is increasing and $g = f^{-1}$, we get

 $f(g(x_0)) \le f(g(x)) \Rightarrow x_0 \le x$

But then this means that x_0 is the left endpoint of J, which is a contradiction $\Rightarrow \Leftarrow$

Since $g(x_0)$ is not an endpoint of I, it must be in the interior of I, and so there exists r > 0 such that $(g(x_0) - r, g(x_0) + r) \subseteq I$

STEP 2: Let $\epsilon > 0$ be given, and assume ϵ so small that $\epsilon < r$ Then, since $\epsilon < r$ and by STEP 1, we have:

 $[g(x_0) - \epsilon, g(x_0) + \epsilon] \subseteq (g(x_0) - r, g(x_0) + r) \subseteq I$

However, since $g(x_0) - \epsilon$ and $g(x_0) + \epsilon$ are in I and $g : J \to I$ is onto (since g is invertible), there are x_1 and x_2 in J such that $g(x_0) - \epsilon = g(x_1)$ and $g(x_0) + \epsilon = g(x_2)$

Claim: $x_1 < x_0 < x_2$

(This is at least true from the picture)

This is because

$$g(x_0) - \epsilon < g(x_0) < g(x_0) + \epsilon$$

$$\Rightarrow g(x_1) < g(x_0) < g(x_2)$$

$$\Rightarrow f(g(x_1)) < f(g(x_0)) < f(g(x_2)) \quad \text{(Since } f \text{ is increasing)}$$

$$\Rightarrow x_1 < x_0 < x_2 \checkmark \quad \text{(Since } g = f^{-1})$$

STEP 3: Actual Proof

With ϵ as above, let $\delta = \min\{|x_2 - x_0|, |x_1 - x_0|\}$

Intuition: With this δ , any x that is δ -close to x_0 is guaranteed to be in the blue region above, and therefore g(x) is guaranteed to be in the red/good region, so g(x) will be ϵ -close to $g(x_0)$

Then if $|x - x_0| < \delta$, then by definition of δ , we get $x_1 < x < x_2$ and therefore

16

$$x_1 < x < x_2$$

$$\Rightarrow g(x_1) < g(x) < g(x_2) \quad \text{(Since } g \text{ is increasing)}$$

$$\Rightarrow g(x_0) - \epsilon < g(x) < g(x_0) + \epsilon \quad \text{(By definition of } x_1 \text{ and } x_2)$$

$$\Rightarrow -\epsilon < g(x) - g(x_0) < \epsilon$$

$$\Rightarrow |g(x) - g(x_0)| < \epsilon$$

Therefore $g = f^{-1}$ is continuous at x_0