LECTURE 19: UNIF. CONTINUITY (II) + LIMITS (I)

1. UNIFORM CONTINUITY AND DERIVATIVES

Video: Uniform Continuity and Derivatives

Here is a nice trick for checking for uniform continuity:

Fact:

Suppose f' is bounded on (a, b), that is: there is M > 0 such that $|f'(x)| \leq M$ for all $x \in (a, b)$.

Then f is uniformly continuous on (a, b)

Note: The same trick works for any interval, even infinite ones.

Example 1:

Let $f(x) = \frac{1}{x}$ on $(2, \infty)$ (continuous). Then $f'(x) = -\frac{1}{x^2}$ and therefore, for all $x \in (2, \infty)$ have

$$|f'(x)| = \left| -\frac{1}{x^2} \right| = \frac{1}{x^2} \le \frac{1}{2^2} = \frac{1}{4} = M$$

Therefore f is uniformly continuous on $(2, \infty)$

Date: Tuesday, November 2, 2021.

The proof of this uses the Mean Value Theorem, which we'll cover in Chapter 5

Mean Value Theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there is $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Proof of Fact: Suppose $|f'(x)| \leq M$ for all x

Let $\epsilon > 0$ be given and let $\delta = \frac{\epsilon}{M}$

Then if $x, y \in (a, b)$ and $|x - y| < \delta$, by the Mean Value Theorem, there is c between x and y such that

$$\frac{f(y) - f(x)}{y - x} = f'(c) \Rightarrow f(y) - f(x) = f'(c)(y - x)$$

 $\mathbf{2}$

But then
$$|f(y) - f(x)| = \underbrace{|f'(c)|}_{\leq M} |y - x| \leq M |y - x| < M \left(\frac{\epsilon}{M}\right) = \epsilon \checkmark$$

Hence f is uniformly continuous on (a, b)

2. UNIFORM CONTINUITY AND CAUCHY

Video: Uniform Continuity and Cauchy

Let's now discuss a useful property that helps us understand how uniformly continuous behave.

Recall (Section 10):

 (s_n) is **Cauchy** if for all $\epsilon > 0$ there is N such that if m, n > N, then $|s_m - s_n| < \epsilon$

If f is continuous and (s_n) converges x_0 , then, by definition, $f(s_n)$ is converges to $f(x_0)$

But what if we replace "converges" by "Cauchy" ?

Question: If (s_n) is Cauchy and f is continuous, is $f(s_n)$ Cauchy?

Example:

4

Let $f(x) = \frac{1}{x}$ on (0, 1)

Then $s_n = \frac{1}{n}$ is Cauchy (because it converges), but $f(s_n) = \frac{1}{s_n} = n$ is not Cauchy (it doesn't even converge)

The reason this fails is because f is not *uniformly* continuous. And in fact, if f is uniformly continuous, then the answer is **YES**:

Fact:

If f is uniformly continuous on a set S and (s_n) is a Cauchy sequence in S, then $f(s_n)$ is Cauchy as well

In other words, uniformly continuous functions take Cauchy sequences to Cauchy sequences.

Proof: Suppose (s_n) is Cauchy and let $\epsilon > 0$ be given. Since f is uniformly continuous on S, there is $\delta > 0$ such that if $x, y \in S$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$

Since (s_n) is Cauchy (with δ instead of ϵ), there is N such that if m, n > N, then $|s_n - s_m| < \delta$, and therefore $|f(s_n) - f(s_m)| < \epsilon$

Hence $f(s_n)$ is Cauchy

Note: This proof works *precisely* because f is uniformly continuous. Uniform continuity doesn't care about the precise location of the s_n . All we know is that the s_n are close to each other, which enough to conclude that $f(s_n)$ are close to each other.

3. CONTINUOUS EXTENSIONS

Video: Continuous Extensions

This last property is useful because it relates uniform continuity with continuous extensions, something much more concrete.

Example 1: Let $f(x) = x \sin\left(\frac{1}{x}\right)$ on (0, 1] (notice f is undefined at 0)

Problem: Can we define f at 0 to make it continuous at 0?

YES, just let f(0) = 0. In other words, if you let

- (1) Then \tilde{f} is continuous on [0, 1], and
- (2) For $x \in (0, 1]$, $\tilde{f}(x) = f(x)$

We call \tilde{f} a **continuous extension** of f:

Definition:

Suppose $A \subseteq B$ and $f : A \to \mathbb{R}$ is continuous. Then $\tilde{f} : B \to \mathbb{R}$ is a **continuous extension** of f if

- (1) \tilde{f} is continuous on B and
- (2) For all $x \in A$ we have $\tilde{f}(x) = f(x)$

So next time you ask for an extension to an assignment, ask for a continuous extension \odot

Fact:

Suppose $f:(a,b)\to\mathbb{R}$ is continuous. Then f is uniformly continuous if and only if it has a continuous extension \tilde{f} on [a,b]

This is very useful for checking if a function is (or is not) uniformly continuous

Example 1:

 $f(x) = x \sin\left(\frac{1}{x}\right)$ is uniformly continuous on (0, 1] because it has a continuous extension $\tilde{f}(x)$

Example 2:

Let $f(x) = \frac{\sin(x)}{x}$ for $x \neq 0$, then f is uniformly continuous on $[-1,0) \cup (0,1]$ because $\tilde{f} : [-1,1] \to \mathbb{R}$ defined by:

$$\tilde{f}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Is a continuous extension of f

Note: The reason \tilde{f} is continuous is because (from Calculus)

Then f is not uniformly continuous on (0, 1] because there is no continuous extension \tilde{f} : No matter how we define $\tilde{f}(0)$, \tilde{f} will not be continuous on [0, 1]

Why? Let $s_n = \frac{1}{\pi n} \to 0$. If \tilde{f} were continuous at 0, then:

$$\tilde{f}(0) = \lim_{n \to \infty} \tilde{f}(s_n) = \lim_{n \to 0} f(s_n) = \sin\left(\frac{1}{s_n}\right) = \sin(\pi n) = 0$$

On the other hand, let $t_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \to 0$. Then

$$\tilde{f}(0) = \lim_{n \to \infty} \tilde{f}(t_n) = \lim_{n \to 0} f(t_n) = \sin\left(\frac{1}{t_n}\right) = \sin\left(\frac{\pi}{2} + 2\pi n\right) = 1$$

Which contradicts $\tilde{f}(0) = 0 \Rightarrow \Leftarrow$. Hence \tilde{f} cannot exist

4. LIMITS OF FUNCTIONS

The nice thing about the definition of continuity is that it generalizes quite easily to limits.

Definition 1:

We say $\lim_{x\to a} f(x) = L$ if: whenever $x_n \to a$, then $f(x_n) \to L$

Definition 2:

We say $\lim_{x\to a} f(x) = L$ if: for all $\epsilon > 0$ there is $\delta > 0$ such that for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$

Note: 0 < |x - a| just means that $x \neq a$, because limits don't care about what happens exactly at a

The two definitions are equivalent, with an almost identical proof to before.

5. EXAMPLE 1: THE BASICS

Video: Example 1: The Basics

Example

As an illustration, let's prove the following limit:

Show:
$$\lim_{x \to 2} x^3 = 8$$

Sequence Definition: If $x_n \to 2$, then $(x_n)^3 \to 2^3 = 8 \checkmark$

Epsilon-Delta Definition:

STEP 1: Scratchwork

Show: for all $\epsilon > 0$ there is $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $|x^3 - 8| < \epsilon$.

$$|x^{3} - 8| = |x^{3} - 2^{3}| = |x - 2| |x^{2} + 2x + 4| < \epsilon$$

Here we used: $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$

But if |x - 2| < 1, then:

$$|x| = |x - 2 + 2| \le |x - 2| + |2| < 1 + 2 = 3$$

And so: $|x^2 + 2x + 4| \le |x|^2 + 2|x| + 4 < (3)^2 + 2(3) + 4 = 9 + 6 + 4 = 19$

Therefore: $|x^3 - 8| = |x - 2| |x^2 + 2x + 4| \le |x - 2| (19) < \epsilon \Rightarrow |x - 2| < \frac{\epsilon}{19}$ This suggests to let $\delta = \frac{\epsilon}{19}$ but also remember that we assumed

This suggests to let $\delta = \frac{\epsilon}{19}$, but also remember that we assumed |x-2| < 1

STEP 2: Actual Proof

Let $\epsilon > 0$ be given, let $\delta = \min\left\{\frac{\epsilon}{19}, 1\right\}$, then if $0 < |x - 2| < \delta$, then |x - 2| < 1, so $|x^2 + 2x + 4| < 19$, but also $|x - 2| < \frac{\epsilon}{19}$, and so:

$$|x^{3} - 8| = |x - 2| |x^{2} + 2x + 4| \le |x - 2| (19) < \left(\frac{\epsilon}{19}\right) (19) = \epsilon \checkmark$$

Hence $\lim_{x\to 2} x^3 = 8$

Note: For more practice with limits, check out the following videos:

Video 1: Linear Function

Video 2: Squares

Video 3: Square Root

Video 4: Reciprocals

6. Example 2: Infinite Limit at a Point

Video: Example 2: Infinite Limit at a point

In this example, I'll cover both a one-sided limit, and an infinite limit at a point:

Example 2:
Show:
$$\lim_{x \to 3^+} \frac{1}{(x-3)^3} = \infty$$

 $x \to 3^+$ just means the limit as x approaches 3 from the right.

Note: For $x \to 3^+$, just replace |x - 3| by x - 3, and for $x \to 3^-$, just replace |x - 3| by -(x - 3) = 3 - x

Here we just want to say: No matter how big a number M, we can make $\frac{1}{(x-3)^3}$ bigger than M by making x close enough to 3:

STEP 1: Scratchwork

Show: For all M > 0 there is $\delta > 0$ such that if $0 < (x - 3) < \delta$, then $\frac{1}{(x-3)^3} > M$

But:
$$\frac{1}{(x-3)^3} > M \Rightarrow (x-3)^3 < \frac{1}{M} \Rightarrow x-3 < \sqrt[3]{\frac{1}{M}}$$

Which suggests to let $\delta = \frac{1}{\sqrt[3]{M}}$

STEP 2: Actual Proof

Let M > 0 be given, let $\delta = \frac{1}{\sqrt[3]{M}}$, then if $0 < x - 3 < \delta$, then

$$\frac{1}{(x-3)^3} > \frac{1}{\delta^3} = \frac{1}{\frac{1}{M}} = M\checkmark$$

Hence $\lim_{x\to\infty}\frac{1}{(x-3)^3}=\infty$

7. EXAMPLE 3: LIMITS AT INFINITY

Video: Example 3: Limit at infinity

Pretty much identical to the sequence definition from section 8:

Show: For all $\epsilon > 0$ there is N such that if x > N then $\left|3 + \frac{2}{x^2} - 3\right| < \epsilon$

But:
$$\left|3 + \frac{2}{x^2} - 3\right| = \frac{2}{x^2} < \epsilon \Rightarrow x^2 > \frac{1}{2\epsilon} \Rightarrow x > \frac{1}{\sqrt{2\epsilon}}$$

Which suggests to let $N = \frac{1}{\sqrt{2\epsilon}}$

STEP 2: Actual Proof

Let $\epsilon > 0$ be given, let $N = \frac{1}{\sqrt{2\epsilon}}$, then if x > N, then

$$\left|3 + \frac{2}{x^2} - 3\right| = \frac{2}{x^2} < \frac{2}{\frac{2}{\epsilon}} = \epsilon \checkmark$$

Note: For $\lim_{x \to -\infty} f(x)$, we replace x > N with x < N.

Note: We can also define $\lim_{x\to\infty} f(x) = \infty$: For all M > 0 there is N such that if x > N then f(x) > M.

8. Optional: Proof of Continuous Extension Fact:

Suppose $f:(a,b) \to \mathbb{R}$ is continuous. Then f is uniformly continuous if and only if it has a continuous extension \tilde{f} on [a,b]

Proof: (\Leftarrow) By definition \tilde{f} is continuous on [a, b], so, by the fact from last time, \tilde{f} is uniformly continuous on [a, b], so $f = \tilde{f}$ is uniformly continuous on the smaller interval (a, b)

 (\Rightarrow) The proof is magical! We'll do some wishful thinking that actually works.

STEP 1: Suppose f is uniformly continuous on (a, b). Since on (a, b), $\tilde{f}(x) =: f(x)$ is continuous, all we really need to do is define $\tilde{f}(a)$ and show \tilde{f} is continuous at a (the case $\tilde{f}(b)$ is similar)

Main Idea:

If \tilde{f} were continuous at a, then for any sequence (s_n) in (a, b) with $s_n \to a$, we would have

$$\lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} \tilde{f}(s_n) = \tilde{f}(a)$$

(Here we used $s_n \in (a, b)$ and $\tilde{f} = f$ on (a, b))

The idea is then to define $\tilde{f}(a)$ as:

 $\tilde{f}(a) =: \lim_{n \to \infty} f(s_n)$ Where (s_n) is any sequence in (a, b) converging to a

Example: Take again $f(x) = x \sin\left(\frac{1}{x}\right)$. What is $\tilde{f}(0)$? Let $s_n = \frac{1}{\pi n} \to 0$. Then, by the above, we have $\tilde{f}(0) = \lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} s_n \sin\left(\frac{1}{s_n}\right) = \lim_{n \to \infty} \left(\frac{1}{\pi n}\right) \underbrace{\sin(\pi n)}_0 = 0$ Therefore $\tilde{f}(0) = 0$

The definition above seems too good to be true! We're *literally* defining $\tilde{f}(a)$ in such a way that it solves our problem. It turns out that it actually works. But in order to make sure that $\tilde{f}(a)$ is well-defined, we need to answer the following questions:

(1) Does $f(s_n)$ even converge? (otherwise $\lim f(s_n)$ makes no sense)

(2) More importantly: Is the above limit independent of the choice of the sequence (s_n) used?

STEP 2:

Claim 1: If (s_n) is a sequence in (a, b) that converges to a, then $f(s_n)$ converges

Proof of Claim 1: Since (s_n) converges, (s_n) is Cauchy, and therefore, since f is uniformly continuous, by the previous section, $f(s_n)$ is Cauchy, and therefore $f(s_n)$ converges \checkmark

STEP 3:

Claim 2: Suppose (s_n) and (t_n) are two sequences in (a, b) converging to a, then

$$\lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} f(t_n)$$

(This shows that the definition $\tilde{f}(a)$ above does not depend on the choice of (s_n))

Proof of Claim 2: Suppose (s_n) and (t_n) both converge to a.

Here's a neat idea: let's *interlace* the two sequences (s_n) and (t_n) to get a new sequence (u_n) :

$$(u_n) = (s_1, t_1, s_2, t_2, \dots)$$

Claim 3: (u_n) converges to a

Proof of Claim 3:

Let $\epsilon > 0$ be given.

Since $s_n \to a$, there is N_1 such that if $n > N_1$, then $|s_n - a| < \epsilon$, and since $t_n \to a$, there is N_2 such that if $n > N_2$, then $|t_n - a| < \epsilon$.

Let $N = N_1 + N_2$

Then if n > N, either $u_n = s_m$ for some $m > N_1$ in which case $|u_n - a| = |s_m - a| < \epsilon$; or $u_n = t_m$ for some $m > N_2$, in which case $|u_n - a| = |t_m - a| < \epsilon$ as well \checkmark

Since $u_n \to a$ and f is continuous,

$$f(u_n) = (f(s_1), f(t_1), f(s_2), f(t_2), \dots)$$

converges to some $s \in \mathbb{R}$. Therefore, any subsequence of $f(u_n)$ converges to s as well.

But $f(s_n) = (f(s_1), f(s_2), ...)$ is a subsequence of $f(u_n)$, and hence converges to s. Similarly $f(t_n) = (f(t_1), f(t_2), ...)$ is a subsequence of $f(u_n)$, hence converges to s as well.

Therefore
$$\lim_{n \to \infty} f(s_n) = s = \lim_{n \to \infty} f(t_n) \checkmark$$

STEP 4: Define:

 $\tilde{f}(a) =: \lim_{n \to \infty} f(s_n)$

Where (s_n) is any sequence in (a, b) converging to a

By **STEP 2** and **STEP 3**, $\tilde{f}(a)$ is well-defined.

It is enough to check that \tilde{f} is continuous at x = a

Let (s_n) be a sequence in [a, b] converging to a, we need to show $\tilde{f}(s_n) \to \tilde{f}(a)$

WLOG, assume $s_n \in (a, b)$, so (s_n) is a sequence in (a, b) converging to a, and therefore:

$$\lim_{n \to \infty} \tilde{f}(s_n) = \lim_{n \to \infty} f(s_n) = \tilde{f}(a) \checkmark$$

In the first step, we used $s_n \in (a, b)$ and in the second step we used the **DEFINITION** of $\tilde{f}(a)$

Hence \tilde{f} is a continuous extension of f \checkmark