
LECTURE 19: UNIF. CONTINUITY (II) + LIMITS (I)

1. Uniform Continuity and Derivatives

Video: Uniform Continuity and Derivatives

Here is a nice trick for checking for uniform continuity:

Fact:

Suppose f ′ is bounded on (a, b), that is: there is M > 0 such
that |f ′(x)| ≤ M for all x ∈ (a, b).

Then f is uniformly continuous on (a, b)

Note: The same trick works for any interval, even infinite ones.

Example 1:

Let f(x) = 1
x on (2,∞) (continuous). Then f ′(x) = − 1

x2 and
therefore, for all x ∈ (2,∞) have

|f ′(x)| =
∣∣∣∣− 1

x2

∣∣∣∣ = 1

x2
≤ 1

22
=

1

4
= M

Therefore f is uniformly continuous on (2,∞)

Date: Tuesday, November 2, 2021.
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https://youtu.be/UJ9Xaj3m7zg
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The proof of this uses the Mean Value Theorem, which we’ll cover in
Chapter 5

Mean Value Theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there
is c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c)

Proof of Fact: Suppose |f ′(x)| ≤ M for all x

Let ϵ > 0 be given and let δ = ϵ
M

Then if x, y ∈ (a, b) and |x− y| < δ, by the Mean Value Theorem,
there is c between x and y such that

f(y)− f(x)

y − x
= f ′(c) ⇒ f(y)− f(x) = f ′(c)(y − x)
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But then |f(y)− f(x)| = |f ′(c)|︸ ︷︷ ︸
≤M

|y − x| ≤ M |y − x| < M
( ϵ

M

)
= ϵ✓

Hence f is uniformly continuous on (a, b) □

2. Uniform Continuity and Cauchy

Video: Uniform Continuity and Cauchy

Let’s now discuss a useful property that helps us understand how uni-
formly continuous behave.

Recall (Section 10):

(sn) is Cauchy if for all ϵ > 0 there is N such that if m,n > N ,
then |sm − sn| < ϵ

If f is continuous and (sn) converges x0, then, by definition, f(sn) is
converges to f(x0)

https://youtu.be/giDQd8EYrOo
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But what if we replace “converges” by “Cauchy” ?

Question: If (sn) is Cauchy and f is continuous, is f(sn) Cauchy?

Example:

Let f(x) = 1
x on (0, 1)

Then sn = 1
n is Cauchy (because it converges), but f(sn) =

1
sn

= n

is not Cauchy (it doesn’t even converge)
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The reason this fails is because f is not uniformly continuous. And in
fact, if f is uniformly continuous, then the answer is YES:

Fact:

If f is uniformly continuous on a set S and (sn) is a Cauchy
sequence in S, then f(sn) is Cauchy as well

In other words, uniformly continuous functions take Cauchy sequences
to Cauchy sequences.

Proof: Suppose (sn) is Cauchy and let ϵ > 0 be given. Since f is
uniformly continuous on S, there is δ > 0 such that if x, y ∈ S and
|x− y| < δ, then |f(x)− f(y)| < ϵ

Since (sn) is Cauchy (with δ instead of ϵ), there is N such that if
m,n > N , then |sn − sm| < δ, and therefore |f(sn)− f(sm)| < ϵ

Hence f(sn) is Cauchy □
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Note: This proof works precisely because f is uniformly continuous.
Uniform continuity doesn’t care about the precise location of the sn.
All we know is that the sn are close to each other, which enough to
conclude that f(sn) are close to each other.

3. Continuous Extensions

Video: Continuous Extensions

This last property is useful because it relates uniform continuity with
continuous extensions, something much more concrete.

Example 1:

Let f(x) = x sin
(
1
x

)
on (0, 1] (notice f is undefined at 0)

https://youtu.be/iqhLGnxh6hc
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Problem: Can we define f at 0 to make it continuous at 0?

YES, just let f(0) = 0. In other words, if you let

f̃(x) =

{
x sin

(
1
x

)
if x ∈ (0, 1]

0 if x = 0

(1) Then f̃ is continuous on [0, 1], and

(2) For x ∈ (0, 1], f̃(x) = f(x)
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We call f̃ a continuous extension of f :

Definition:

Suppose A ⊆ B and f : A → R is continuous. Then f̃ : B → R
is a continuous extension of f if

(1) f̃ is continuous on B and

(2) For all x ∈ A we have f̃(x) = f(x)

So next time you ask for an extension to an assignment, ask for a
continuous extension ,

Fact:

Suppose f : (a, b) → R is continuous. Then f is uniformly con-
tinuous if and only if it has a continuous extension f̃ on [a, b]

This is very useful for checking if a function is (or is not) uniformly
continuous



LECTURE 19: UNIF. CONTINUITY (II) + LIMITS (I) 9

Example 1:

f(x) = x sin
(
1
x

)
is uniformly continuous on (0, 1] because it has

a continuous extension f̃(x)

Example 2:

Let f(x) = sin(x)
x for x ̸= 0, then f is uniformly continuous on

[−1, 0) ∪ (0, 1] because f̃ : [−1, 1] → R defined by:

f̃(x) =

{
sin(x)

x if x ̸= 0

1 if x = 0

Is a continuous extension of f
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Note: The reason f̃ is continuous is because (from Calculus)

lim
x→0

sin(x)

x
→ 1

Example 3:

Let f(x) = sin
(
1
x

)
on (0, 1].

Then f is not uniformly continuous on (0, 1] because there is no con-
tinuous extension f̃ : No matter how we define f̃(0), f̃ will not be
continuous on [0, 1]

Why? Let sn = 1
πn → 0. If f̃ were continuous at 0, then:

f̃(0) = lim
n→∞

f̃(sn) = lim
n→0

f(sn) = sin

(
1

sn

)
= sin(πn) = 0

On the other hand, let tn = 1
π
2+2πn

→ 0. Then

f̃(0) = lim
n→∞

f̃(tn) = lim
n→0

f(tn) = sin

(
1

tn

)
= sin

(π
2
+ 2πn

)
= 1
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Which contradicts f̃(0) = 0 ⇒⇐. Hence f̃ cannot exist □

4. Limits of Functions

The nice thing about the definition of continuity is that it generalizes
quite easily to limits.

Definition 1:

We say limx→a f(x) = L if: whenever xn → a, then f(xn) → L

Definition 2:

We say limx→a f(x) = L if: for all ϵ > 0 there is δ > 0 such that
for all x, if 0 < |x− a| < δ, then |f(x)− L| < ϵ

Note: 0 < |x− a| just means that x ̸= a, because limits don’t care
about what happens exactly at a
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The two definitions are equivalent, with an almost identical proof to
before.

5. Example 1: The Basics

Video: Example 1: The Basics

As an illustration, let’s prove the following limit:

Example 1:

Show: lim
x→2

x3 = 8

Sequence Definition: If xn → 2, then (xn)
3 → 23 = 8 ✓

https://www.youtube.com/watch?v=wOMKAeBNRqY
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Epsilon-Delta Definition:

STEP 1: Scratchwork

Show: for all ϵ > 0 there is δ > 0 such that if 0 < |x− 2| < δ then∣∣x3 − 8
∣∣ < ϵ.∣∣x3 − 8

∣∣ = ∣∣x3 − 23
∣∣ = |x− 2|

∣∣x2 + 2x+ 4
∣∣ < ϵ

Here we used: A3 −B3 = (A−B)(A2 + AB +B2)

But if |x− 2| < 1, then:

|x| = |x− 2 + 2| ≤ |x− 2|+ |2| < 1 + 2 = 3

And so:
∣∣x2 + 2x+ 4

∣∣ ≤ |x|2+2 |x|+4 < (3)2+2(3)+4 = 9+6+4 = 19

Therefore:
∣∣x3 − 8

∣∣ = |x− 2|
∣∣x2 + 2x+ 4

∣∣ ≤ |x− 2| (19) < ϵ ⇒ |x− 2| < ϵ

19

This suggests to let δ = ϵ
19 , but also remember that we assumed

|x− 2| < 1

STEP 2: Actual Proof

Let ϵ > 0 be given, let δ = min
{

ϵ
19 , 1

}
, then if 0 < |x− 2| < δ, then

|x− 2| < 1, so
∣∣x2 + 2x+ 4

∣∣ < 19, but also |x− 2| < ϵ
19 , and so:∣∣x3 − 8

∣∣ = |x− 2|
∣∣x2 + 2x+ 4

∣∣ ≤ |x− 2| (19) <
( ϵ

19

)
(19) = ϵ✓

Hence limx→2 x
3 = 8

Note: For more practice with limits, check out the following videos:
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Video 1: Linear Function

Video 2: Squares

Video 3: Square Root

Video 4: Reciprocals

6. Example 2: Infinite Limit at a Point

Video: Example 2: Infinite Limit at a point

In this example, I’ll cover both a one-sided limit, and an infinite limit
at a point:

Example 2:

Show: lim
x→3+

1

(x− 3)3
= ∞

x → 3+ just means the limit as x approaches 3 from the right.

Note: For x → 3+, just replace |x− 3| by x− 3, and for x → 3−, just
replace |x− 3| by −(x− 3) = 3− x

Here we just want to say: No matter how big a number M , we can
make 1

(x−3)
3 bigger than M by making x close enough to 3:

https://www.youtube.com/watch?v=MaPkBZMkR1U
https://www.youtube.com/watch?v=WUVopna5aFs
https://www.youtube.com/watch?v=AIt_ieDjWCo
https://www.youtube.com/watch?v=cYDPbrjuT1w
https://www.youtube.com/watch?v=TiZfpqfGInY
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STEP 1: Scratchwork

Show: For all M > 0 there is δ > 0 such that if 0 < (x− 3) < δ, then
1

(x−3)
3 > M

But:
1

(x− 3)3
> M ⇒ (x− 3)3 <

1

M
⇒ x− 3 <

3

√
1

M

Which suggests to let δ = 1
3
√
M

STEP 2: Actual Proof

Let M > 0 be given, let δ = 1
3
√
M
, then if 0 < x− 3 < δ, then

1

(x− 3)3
>

1

δ3
=

1
1
M

= M✓
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Hence limx→∞
1

(x−3)
3 = ∞

7. Example 3: Limits at Infinity

Video: Example 3: Limit at infinity

Pretty much identical to the sequence definition from section 8:

Example 3:

Show: lim
x→∞

3 +
2

x2
= 3

STEP 1: Scratchwork

https://www.youtube.com/watch?v=0LCowZPB7m8
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Show: For all ϵ > 0 there is N such that if x > N then
∣∣3 + 2

x2 − 3
∣∣ < ϵ

But:

∣∣∣∣3 + 2

x2
− 3

∣∣∣∣ = 2

x2
< ϵ ⇒ x2 >

2ϵ
⇒ x >

1√
2ϵ

Which suggests to let N = 1√
2ϵ

STEP 2: Actual Proof

Let ϵ > 0 be given, let N = 1√
2ϵ
, then if x > N , then∣∣∣∣3 + 2

x2
− 3

∣∣∣∣ = 2

x2
<

2
2
ϵ

= ϵ✓

Note: For limx→−∞ f(x), we replace x > N with x < N .

Note: We can also define limx→∞ f(x) = ∞: For all M > 0 there is
N such that if x > N then f(x) > M .

8. Optional: Proof of Continuous Extension
Fact:

Suppose f : (a, b) → R is continuous. Then f is uniformly con-
tinuous if and only if it has a continuous extension f̃ on [a, b]

Proof: (⇐) By definition f̃ is continuous on [a, b], so, by the fact from
last time, f̃ is uniformly continuous on [a, b], so f = f̃ is uniformly con-
tinuous on the smaller interval (a, b)

(⇒) The proof is magical! We’ll do some wishful thinking that actually
works.
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STEP 1: Suppose f is uniformly continuous on (a, b). Since on (a, b),
f̃(x) =: f(x) is continuous, all we really need to do is define f̃(a) and
show f̃ is continuous at a (the case f̃(b) is similar)

Main Idea:

If f̃ were continuous at a, then for any sequence (sn) in (a, b) with
sn → a, we would have

lim
n→∞

f(sn) = lim
n→∞

f̃(sn) = f̃(a)

(Here we used sn ∈ (a, b) and f̃ = f on (a, b))

The idea is then to define f̃(a) as:

f̃(a) =: lim
n→∞

f(sn)

Where (sn) is any sequence in (a, b) converging to a



LECTURE 19: UNIF. CONTINUITY (II) + LIMITS (I) 19

Example:

Take again f(x) = x sin
(
1
x

)
. What is f̃(0)?

Let sn = 1
πn → 0. Then, by the above, we have

f̃(0) = lim
n→∞

f(sn) = lim
n→∞

sn sin

(
1

sn

)
= lim

n→∞

(
1

πn

)
sin(πn)︸ ︷︷ ︸

0

= 0

Therefore f̃(0) = 0

The definition above seems too good to be true! We’re literally defining
f̃(a) in such a way that it solves our problem. It turns out that it
actually works. But in order to make sure that f̃(a) is well-defined,
we need to answer the following questions:

(1) Does f(sn) even converge? (otherwise lim f(sn) makes no sense)
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(2) More importantly: Is the above limit independent of the choice
of the sequence (sn) used?

STEP 2:

Claim 1: If (sn) is a sequence in (a, b) that converges to a, then
f(sn) converges

Proof of Claim 1: Since (sn) converges, (sn) is Cauchy, and there-
fore, since f is uniformly continuous, by the previous section, f(sn) is
Cauchy, and therefore f(sn) converges ✓

STEP 3:

Claim 2: Suppose (sn) and (tn) are two sequences in (a, b) con-
verging to a, then

lim
n→∞

f(sn) = lim
n→∞

f(tn)

(This shows that the definition f̃(a) above does not depend on the
choice of (sn))

Proof of Claim 2: Suppose (sn) and (tn) both converge to a.

Here’s a neat idea: let’s interlace the two sequences (sn) and (tn) to
get a new sequence (un):

(un) = (s1, t1, s2, t2, . . . )

Claim 3: (un) converges to a
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Proof of Claim 3:

Let ϵ > 0 be given.

Since sn → a, there is N1 such that if n > N1, then |sn − a| < ϵ, and
since tn → a, there is N2 such that if n > N2, then |tn − a| < ϵ.
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Let N = N1 +N2

Then if n > N , either un = sm for some m > N1 in which case
|un − a| = |sm − a| < ϵ; or un = tm for some m > N2, in which case
|un − a| = |tm − a| < ϵ as well ✓

Since un → a and f is continuous,

f(un) = (f(s1), f(t1), f(s2), f(t2), . . . )

converges to some s ∈ R. Therefore, any subsequence of f(un) con-
verges to s as well.

But f(sn) = (f(s1), f(s2), . . . ) is a subsequence of f(un), and hence
converges to s. Similarly f(tn) = (f(t1), f(t2), . . . ) is a subsequence of
f(un), hence converges to s as well.

Therefore lim
n→∞

f(sn) = s = lim
n→∞

f(tn)✓

STEP 4: Define:

f̃(a) =: lim
n→∞

f(sn)

Where (sn) is any sequence in (a, b) converging to a

By STEP 2 and STEP 3, f̃(a) is well-defined.

It is enough to check that f̃ is continuous at x = a

Let (sn) be a sequence in [a, b] converging to a, we need to show
f̃(sn) → f̃(a)
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WLOG, assume sn ∈ (a, b), so (sn) is a sequence in (a, b) converging
to a, and therefore:

lim
n→∞

f̃(sn) = lim
n→∞

f(sn) = f̃(a)✓

In the first step, we used sn ∈ (a, b) and in the second step we used
the DEFINITION of f̃(a)

Hence f̃ is a continuous extension of f ✓ □
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