LECTURE 19: UNIF. CONTINUITY (II) + LIMITS (I)

1. Uniform Continuity and Derivatives

Video: Uniform Continuity and Derivatives
Here is a nice trick for checking for uniform continuity:

Fact:

Suppose f^{\prime} is bounded on (a, b), that is: there is $M>0$ such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$.

Then f is uniformly continuous on (a, b)
Note: The same trick works for any interval, even infinite ones.

Example 1:

Let $f(x)=\frac{1}{x}$ on $(2, \infty)$ (continuous). Then $f^{\prime}(x)=-\frac{1}{x^{2}}$ and therefore, for all $x \in(2, \infty)$ have

$$
\left|f^{\prime}(x)\right|=\left|-\frac{1}{x^{2}}\right|=\frac{1}{x^{2}} \leq \frac{1}{2^{2}}=\frac{1}{4}=M
$$

Therefore f is uniformly continuous on $(2, \infty)$

The proof of this uses the Mean Value Theorem, which we'll cover in Chapter 5

Mean Value Theorem:

If f is continuous on $[a, b]$ and differentiable on (a, b), then there is $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Proof of Fact: Suppose $\left|f^{\prime}(x)\right| \leq M$ for all x
Let $\epsilon>0$ be given and let $\delta=\frac{\epsilon}{M}$
Then if $x, y \in(a, b)$ and $|x-y|<\delta$, by the Mean Value Theorem, there is c between x and y such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c) \Rightarrow f(y)-f(x)=f^{\prime}(c)(y-x)
$$

But then $|f(y)-f(x)|=\underbrace{\left|f^{\prime}(c)\right|}_{\leq M}|y-x| \leq M|y-x|<M\left(\frac{\epsilon}{M}\right)=\epsilon \checkmark$ Hence f is uniformly continuous on (a, b)

2. Uniform Continuity and Cauchy

Video: Uniform Continuity and Cauchy
Let's now discuss a useful property that helps us understand how uniformly continuous behave.

Recall (Section 10):

$\left(s_{n}\right)$ is Cauchy if for all $\epsilon>0$ there is N such that if $m, n>N$, then $\left|s_{m}-s_{n}\right|<\epsilon$

If f is continuous and $\left(s_{n}\right)$ converges x_{0}, then, by definition, $f\left(s_{n}\right)$ is converges to $f\left(x_{0}\right)$

But what if we replace "converges" by "Cauchy"?
Question: If $\left(s_{n}\right)$ is Cauchy and f is continuous, is $f\left(s_{n}\right)$ Cauchy?

NO.

Example:

Let $f(x)=\frac{1}{x}$ on $(0,1)$
Then $s_{n}=\frac{1}{n}$ is Cauchy (because it converges), but $f\left(s_{n}\right)=\frac{1}{s_{n}}=n$ is not Cauchy (it doesn't even converge)

The reason this fails is because f is not uniformly continuous. And in fact, if f is uniformly continuous, then the answer is YES:

Fact:
If f is uniformly continuous on a set S and $\left(s_{n}\right)$ is a Cauchy sequence in S, then $f\left(s_{n}\right)$ is Cauchy as well

In other words, uniformly continuous functions take Cauchy sequences to Cauchy sequences.

Proof: Suppose $\left(s_{n}\right)$ is Cauchy and let $\epsilon>0$ be given. Since f is uniformly continuous on S, there is $\delta>0$ such that if $x, y \in S$ and $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$

Since $\left(s_{n}\right)$ is Cauchy (with δ instead of ϵ), there is N such that if $m, n>N$, then $\left|s_{n}-s_{m}\right|<\delta$, and therefore $\left|f\left(s_{n}\right)-f\left(s_{m}\right)\right|<\epsilon$

Hence $f\left(s_{n}\right)$ is Cauchy

Note: This proof works precisely because f is uniformly continuous. Uniform continuity doesn't care about the precise location of the s_{n}. All we know is that the s_{n} are close to each other, which enough to conclude that $f\left(s_{n}\right)$ are close to each other.

3. Continuous Extensions

Video: Continuous Extensions

This last property is useful because it relates uniform continuity with continuous extensions, something much more concrete.

Example 1:

Let $f(x)=x \sin \left(\frac{1}{x}\right)$ on $(0,1]$ (notice f is undefined at 0)

Problem: Can we define f at 0 to make it continuous at 0 ?
YES, just let $f(0)=0$. In other words, if you let

$$
\tilde{f}(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \in(0,1] \\ 0 & \text { if } x=0\end{cases}
$$

Undefined

(1) Then \tilde{f} is continuous on $[0,1]$, and
(2) For $x \in(0,1], \tilde{f}(x)=f(x)$

We call \tilde{f} a continuous extension of f :

Definition:

Suppose $A \subseteq B$ and $f: A \rightarrow \mathbb{R}$ is continuous. Then $\tilde{f}: B \rightarrow \mathbb{R}$ is a continuous extension of f if
(1) \tilde{f} is continuous on B and
(2) For all $x \in A$ we have $\tilde{f}(x)=f(x)$

So next time you ask for an extension to an assignment, ask for a continuous extension ©

Fact:

Suppose $f:(a, b) \rightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous if and only if it has a continuous extension \tilde{f} on $[a, b]$

This is very useful for checking if a function is (or is not) uniformly continuous

Example 1:

$f(x)=x \sin \left(\frac{1}{x}\right)$ is uniformly continuous on $(0,1]$ because it has a continuous extension $\tilde{f}(x)$

Example 2:

Let $f(x)=\frac{\sin (x)}{x}$ for $x \neq 0$, then f is uniformly continuous on $[-1,0) \cup(0,1]$ because $\tilde{f}:[-1,1] \rightarrow \mathbb{R}$ defined by:

$$
\tilde{f}(x)= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Is a continuous extension of f

Note: The reason \tilde{f} is continuous is because (from Calculus)

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \rightarrow 1
$$

Example 3:

Let $f(x)=\sin \left(\frac{1}{x}\right)$ on $(0,1]$.

Then f is not uniformly continuous on (0,1] because there is no continuous extension \tilde{f} : No matter how we define $\tilde{f}(0), \tilde{f}$ will not be continuous on $[0,1]$

Why? Let $s_{n}=\frac{1}{\pi n} \rightarrow 0$. If \tilde{f} were continuous at 0 , then:

$$
\tilde{f}(0)=\lim _{n \rightarrow \infty} \tilde{f}\left(s_{n}\right)=\lim _{n \rightarrow 0} f\left(s_{n}\right)=\sin \left(\frac{1}{s_{n}}\right)=\sin (\pi n)=0
$$

On the other hand, let $t_{n}=\frac{1}{\frac{\pi}{2}+2 \pi n} \rightarrow 0$. Then

$$
\tilde{f}(0)=\lim _{n \rightarrow \infty} \tilde{f}\left(t_{n}\right)=\lim _{n \rightarrow 0} f\left(t_{n}\right)=\sin \left(\frac{1}{t_{n}}\right)=\sin \left(\frac{\pi}{2}+2 \pi n\right)=1
$$

Which contradicts $\tilde{f}(0)=0 \Rightarrow \Leftarrow$. Hence \tilde{f} cannot exist

4. Limits of Functions

The nice thing about the definition of continuity is that it generalizes quite easily to limits.

Definition 1:

We say $\lim _{x \rightarrow a} f(x)=L$ if: whenever $x_{n} \rightarrow a$, then $f\left(x_{n}\right) \rightarrow L$

Definition 2:

We say $\lim _{x \rightarrow a} f(x)=L$ if: for all $\epsilon>0$ there is $\delta>0$ such that for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$

Note: $0<|x-a|$ just means that $x \neq a$, because limits don't care about what happens exactly at a

The two definitions are equivalent, with an almost identical proof to before.

5. Example 1: The Basics

Video: Example 1: The Basics
As an illustration, let's prove the following limit:

Example 1:

$$
\text { Show: } \lim _{x \rightarrow 2} x^{3}=8
$$

Sequence Definition: If $x_{n} \rightarrow 2$, then $\left(x_{n}\right)^{3} \rightarrow 2^{3}=8 \checkmark$

Epsilon-Delta Definition:

STEP 1: Scratchwork

Show: for all $\epsilon>0$ there is $\delta>0$ such that if $0<|x-2|<\delta$ then $\left|x^{3}-8\right|<\epsilon$.

$$
\left|x^{3}-8\right|=\left|x^{3}-2^{3}\right|=|x-2|\left|x^{2}+2 x+4\right|<\epsilon
$$

Here we used: $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
But if $|x-2|<1$, then:

$$
|x|=|x-2+2| \leq|x-2|+|2|<1+2=3
$$

And so: $\left|x^{2}+2 x+4\right| \leq|x|^{2}+2|x|+4<(3)^{2}+2(3)+4=9+6+4=19$
Therefore: $\left|x^{3}-8\right|=|x-2|\left|x^{2}+2 x+4\right| \leq|x-2|(19)<\epsilon \Rightarrow|x-2|<\frac{\epsilon}{19}$
This suggests to let $\delta=\frac{\epsilon}{19}$, but also remember that we assumed $|x-2|<1$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, let $\delta=\min \left\{\frac{\epsilon}{19}, 1\right\}$, then if $0<|x-2|<\delta$, then $|x-2|<1$, so $\left|x^{2}+2 x+4\right|<19$, but also $|x-2|<\frac{\epsilon}{19}$, and so:

$$
\left|x^{3}-8\right|=|x-2|\left|x^{2}+2 x+4\right| \leq|x-2|(19)<\left(\frac{\epsilon}{19}\right)(19)=\epsilon \checkmark
$$

Hence $\lim _{x \rightarrow 2} x^{3}=8$
Note: For more practice with limits, check out the following videos:

Video 1: Linear Function
Video 2: Squares
Video 3: Square Root
Video 4: Reciprocals

6. Example 2: Infinite Limit at a Point

Video: Example 2: Infinite Limit at a point

In this example, I'll cover both a one-sided limit, and an infinite limit at a point:

Example 2:

$$
\text { Show: } \lim _{x \rightarrow 3^{+}} \frac{1}{(x-3)^{3}}=\infty
$$

$x \rightarrow 3^{+}$just means the limit as x approaches 3 from the right.
Note: For $x \rightarrow 3^{+}$, just replace $|x-3|$ by $x-3$, and for $x \rightarrow 3^{-}$, just replace $|x-3|$ by $-(x-3)=3-x$

Here we just want to say: No matter how big a number M, we can make $\frac{1}{(x-3)^{3}}$ bigger than M by making x close enough to 3 :

STEP 1: Scratchwork

Show: For all $M>0$ there is $\delta>0$ such that if $0<(x-3)<\delta$, then $\frac{1}{(x-3)^{3}}>M$

$$
\text { But: } \frac{1}{(x-3)^{3}}>M \Rightarrow(x-3)^{3}<\frac{1}{M} \Rightarrow x-3<\sqrt[3]{\frac{1}{M}}
$$

Which suggests to let $\delta=\frac{1}{\sqrt[3]{M}}$
STEP 2: Actual Proof
Let $M>0$ be given, let $\delta=\frac{1}{\sqrt[3]{M}}$, then if $0<x-3<\delta$, then

$$
\frac{1}{(x-3)^{3}}>\frac{1}{\delta^{3}}=\frac{1}{\frac{1}{M}}=M \checkmark
$$

Hence $\lim _{x \rightarrow \infty} \frac{1}{(x-3)^{3}}=\infty$

7. Example 3: Limits at Infinity

Video: Example 3: Limit at infinity
Pretty much identical to the sequence definition from section 8:

Example 3:

$$
\text { Show: } \lim _{x \rightarrow \infty} 3+\frac{2}{x^{2}}=3
$$

STEP 1: Scratchwork

Show: For all $\epsilon>0$ there is N such that if $x>N$ then $\left|3+\frac{2}{x^{2}}-3\right|<\epsilon$

$$
\text { But: }\left|3+\frac{2}{x^{2}}-3\right|=\frac{2}{x^{2}}<\epsilon \Rightarrow x^{2}>\frac{}{2 \epsilon} \Rightarrow x>\frac{1}{\sqrt{2 \epsilon}}
$$

Which suggests to let $N=\frac{1}{\sqrt{2 \epsilon}}$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, let $N=\frac{1}{\sqrt{2 \epsilon}}$, then if $x>N$, then

$$
\left|3+\frac{2}{x^{2}}-3\right|=\frac{2}{x^{2}}<\frac{2}{\frac{2}{\epsilon}}=\epsilon \mathfrak{\checkmark}
$$

Note: For $\lim _{x \rightarrow-\infty} f(x)$, we replace $x>N$ with $x<N$.
Note: We can also define $\lim _{x \rightarrow \infty} f(x)=\infty$: For all $M>0$ there is N such that if $x>N$ then $f(x)>M$.

8. Optional: Proof of Continuous Extension

Fact:

Suppose $f:(a, b) \rightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous if and only if it has a continuous extension \tilde{f} on $[a, b]$

Proof: (\Leftarrow) By definition \tilde{f} is continuous on $[a, b]$, so, by the fact from last time, \tilde{f} is uniformly continuous on $[a, b]$, so $f=\tilde{f}$ is uniformly continuous on the smaller interval (a, b)
(\Rightarrow) The proof is magical! We'll do some wishful thinking that actually works.

STEP 1: Suppose f is uniformly continuous on (a, b). Since on (a, b), $\tilde{f}(x)=: f(x)$ is continuous, all we really need to do is define $\tilde{f}(a)$ and show \tilde{f} is continuous at a (the case $\tilde{f}(b)$ is similar)

Main Idea:

If \tilde{f} were continuous at a, then for any sequence $\left(s_{n}\right)$ in (a, b) with $s_{n} \rightarrow a$, we would have

$$
\lim _{n \rightarrow \infty} f\left(s_{n}\right)=\lim _{n \rightarrow \infty} \tilde{f}\left(s_{n}\right)=\tilde{f}(a)
$$

(Here we used $s_{n} \in(a, b)$ and $\tilde{f}=f$ on (a, b))
The idea is then to define $\tilde{f}(a)$ as:

$$
\tilde{f}(a)=: \lim _{n \rightarrow \infty} f\left(s_{n}\right)
$$

Where $\left(s_{n}\right)$ is any sequence in (a, b) converging to a

Example:

Take again $f(x)=x \sin \left(\frac{1}{x}\right)$. What is $\tilde{f}(0)$?
Let $s_{n}=\frac{1}{\pi n} \rightarrow 0$. Then, by the above, we have

$$
\tilde{f}(0)=\lim _{n \rightarrow \infty} f\left(s_{n}\right)=\lim _{n \rightarrow \infty} s_{n} \sin \left(\frac{1}{s_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{\pi n}\right) \underbrace{\sin (\pi n)}_{0}=0
$$

Therefore $\tilde{f}(0)=0$

The definition above seems too good to be true! We're literally defining $\tilde{f}(a)$ in such a way that it solves our problem. It turns out that it actually works. But in order to make sure that $\tilde{f}(a)$ is well-defined, we need to answer the following questions:
(1) Does $f\left(s_{n}\right)$ even converge? (otherwise $\lim f\left(s_{n}\right)$ makes no sense)
(2) More importantly: Is the above limit independent of the choice of the sequence $\left(s_{n}\right)$ used?

STEP 2:

Claim 1: If $\left(s_{n}\right)$ is a sequence in (a, b) that converges to a, then $f\left(s_{n}\right)$ converges

Proof of Claim 1: Since $\left(s_{n}\right)$ converges, $\left(s_{n}\right)$ is Cauchy, and therefore, since f is uniformly continuous, by the previous section, $f\left(s_{n}\right)$ is Cauchy, and therefore $f\left(s_{n}\right)$ converges \checkmark

STEP 3:

Claim 2: Suppose $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are two sequences in (a, b) converging to a, then

$$
\lim _{n \rightarrow \infty} f\left(s_{n}\right)=\lim _{n \rightarrow \infty} f\left(t_{n}\right)
$$

(This shows that the definition $\tilde{f}(a)$ above does not depend on the choice of $\left(s_{n}\right)$)

Proof of Claim 2: Suppose $\left(s_{n}\right)$ and $\left(t_{n}\right)$ both converge to a.
Here's a neat idea: let's interlace the two sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ to get a new sequence (u_{n}):

$$
\left(u_{n}\right)=\left(s_{1}, t_{1}, s_{2}, t_{2}, \ldots\right)
$$

Claim 3: $\left(u_{n}\right)$ converges to a

Proof of Claim 3:

Let $\epsilon>0$ be given.
Since $s_{n} \rightarrow a$, there is N_{1} such that if $n>N_{1}$, then $\left|s_{n}-a\right|<\epsilon$, and since $t_{n} \rightarrow a$, there is N_{2} such that if $n>N_{2}$, then $\left|t_{n}-a\right|<\epsilon$.

u_{n}

$\mathrm{N}_{1}+\mathrm{N}_{2}$

Let $N=N_{1}+N_{2}$
Then if $n>N$, either $u_{n}=s_{m}$ for some $m>N_{1}$ in which case $\left|u_{n}-a\right|=\left|s_{m}-a\right|<\epsilon$; or $u_{n}=t_{m}$ for some $m>N_{2}$, in which case $\left|u_{n}-a\right|=\left|t_{m}-a\right|<\epsilon$ as well \checkmark

Since $u_{n} \rightarrow a$ and f is continuous,

$$
f\left(u_{n}\right)=\left(f\left(s_{1}\right), f\left(t_{1}\right), f\left(s_{2}\right), f\left(t_{2}\right), \ldots\right)
$$

converges to some $s \in \mathbb{R}$. Therefore, any subsequence of $f\left(u_{n}\right)$ converges to s as well.

But $f\left(s_{n}\right)=\left(f\left(s_{1}\right), f\left(s_{2}\right), \ldots\right)$ is a subsequence of $f\left(u_{n}\right)$, and hence converges to s. Similarly $f\left(t_{n}\right)=\left(f\left(t_{1}\right), f\left(t_{2}\right), \ldots\right)$ is a subsequence of $f\left(u_{n}\right)$, hence converges to s as well.

$$
\text { Therefore } \lim _{n \rightarrow \infty} f\left(s_{n}\right)=s=\lim _{n \rightarrow \infty} f\left(t_{n}\right) \checkmark
$$

STEP 4: Define:

$$
\tilde{f}(a)=: \lim _{n \rightarrow \infty} f\left(s_{n}\right)
$$

Where $\left(s_{n}\right)$ is any sequence in (a, b) converging to a
By STEP 2 and STEP 3, $\tilde{f}(a)$ is well-defined.
It is enough to check that \tilde{f} is continuous at $x=a$
Let $\left(s_{n}\right)$ be a sequence in $[a, b]$ converging to a, we need to show $\tilde{f}\left(s_{n}\right) \rightarrow \tilde{f}(a)$

WLOG, assume $s_{n} \in(a, b)$, so $\left(s_{n}\right)$ is a sequence in (a, b) converging to a, and therefore:

$$
\lim _{n \rightarrow \infty} \tilde{f}\left(s_{n}\right)=\lim _{n \rightarrow \infty} f\left(s_{n}\right)=\tilde{f}(a) \checkmark
$$

In the first step, we used $s_{n} \in(a, b)$ and in the second step we used the DEFINITION of $\tilde{f}(a)$

Hence \tilde{f} is a continuous extension of $f \checkmark$

