LECTURE 19: DOUBLE INTEGRALS (I)

Welcome to the world of double integrals! It's double the integrals, but triple the fun!

1. Introduction

Recall:

$\int_{a}^{b} f(x) d x$ represents the area under the graph of f from a to b

Date: Monday, October 11, 2021.

In three dimensions, it's the same, except areas becomes volumes, and integrals become double integrals:

Double Integral:

$$
\begin{aligned}
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y= & \text { VOLUME under the graph of } f \\
& \text { and over the rectangle } R=[a, b] \times[c, d]
\end{aligned}
$$

Analogy: Think of slicing a cake, where the base is a rectangle and the height is your function.

2. Calculating Double Integrals

This is the definition, but do we actually calculate double integrals?

Example 1:

Calculate the volume under the graph of $f(x, y)=9-x^{2}-y^{2}$ and over $[0,1] \times[0,2]$

Here x is between 0 and 1 , and y is between 0 and 2 .
Note: The technique is the same as for derivatives, except here you integrate with respect to x (treating y as a constant) instead of differentiate with respect to x.

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} \int_{0}^{1} 9-x^{2}-y^{2} d x d y \\
& =\int_{0}^{2}\left(\int_{0}^{1} 9-x^{2}-y^{2} d x\right) d y \\
& =\int_{0}^{2}\left[9 x-\frac{x^{3}}{3}-y^{2} x\right]_{x=0}^{x=1} d y \\
& =\int_{0}^{2} 9(1)-\frac{(1)^{3}}{3}-y^{2}(1)-9(0)+\frac{(0)^{3}}{3}-y^{2}(0) d y \\
& =\int_{0}^{2} 9-\frac{1}{3}-y^{2} d y \\
& =\int_{0}^{2} \frac{26}{3}-y^{2} d y \\
& =\left[\frac{26}{3} y-\frac{y^{3}}{3}\right]_{0}^{2} \\
& =\left(\frac{26}{3}\right)(2)-\frac{(2)^{3}}{3}-\left(\frac{26}{3}\right)(0)+\frac{0^{3}}{3} \\
& =\frac{52}{3}-\frac{8}{3} \\
& =\frac{44}{3}
\end{aligned}
$$

Notice how we turned the double integral (with x and y) into a singlevariable integral (with y only). This idea will be extremely important when we'll do triple integrals.

Example 2:

(a) Calculate

$$
\int_{1}^{2} \int_{-3}^{1} x^{2} y d x d y
$$

$$
\begin{aligned}
& \int_{1}^{2}\left(\int_{-3}^{1} x^{2} y d x\right) d y \\
= & \int_{1}^{2}\left[\left(\frac{x^{3}}{3}\right) y\right]_{x=-3}^{x=1} d y \\
= & \int_{1}^{2} \frac{(1)^{3}}{3} y-\frac{(-3)^{3}}{3} y d y \\
= & \int_{1}^{2}\left(\frac{1}{3}\right) y+9 y d y \\
= & \int_{1}^{2}\left(\frac{28}{3}\right) y d y \\
= & {\left[\left(\frac{28}{3}\right) \frac{y^{2}}{2}\right]_{1}^{2} } \\
= & {\left[\left(\frac{14}{3}\right) y^{2}\right]_{1}^{2} } \\
= & \left(\frac{14}{3}\right)(4-1) \\
= & \left(\frac{14}{3}\right)(3) \\
= & 14
\end{aligned}
$$

(b) Calculate

$$
\int_{-3}^{1} \int_{1}^{2} x^{2} y d y d x
$$

Here x and y are switched, so you do y first:

$$
\begin{aligned}
\text { Answer } & =\int_{-3}^{1}\left(\int_{1}^{2} x^{2} y d y\right) d x \\
& =\int_{-3}^{1}\left[x^{2}\left(\frac{y^{2}}{2}\right)\right]_{y=1}^{y=2} d x \\
& =\int_{-3}^{1} x^{2}\left(\frac{4}{2}\right)-x^{2} \frac{1}{2} d x \\
& =\int_{-3}^{1}\left(\frac{3}{2}\right) x^{2} d x \\
& =\left[\left(\frac{3}{2}\right)\left(\frac{x^{3}}{3}\right)\right]_{-3}^{1} \\
& =\left[\left(\frac{x^{3}}{2}\right)\right]_{-3}^{1} \\
& =\frac{1}{2}\left(1-(-3)^{3}\right) \\
& =\frac{1}{2}(1+27) \\
& =\frac{28}{2} \\
& =14
\end{aligned}
$$

Notice: We have the same answer! In fact this is always true, and has a special name:

3. Fubini's Theorem

Fubini's Theorem:

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Or, in layman's terms, $d x d y=d y d x$. Compare with Clairaut, which says $f_{x y}=f_{y x}$

In other words, the order of integration doesn't matter; we can evaluate a double integral in any order that we want (either x first and then y or y first and then x).

Note: Strictly speaking, this theorem isn't always true (but will be true in our class). You can check out the following optional video for an interesting counterexample:

Video: Fubini Counterexample (optional)
Definitely use this theorem to your advantage, it will simplify your calculations tremendously:

Example 3:

$$
\int_{0}^{\pi} \int_{1}^{2} x \cos (x y) d x d y
$$

First Try:

$$
\int_{0}^{\pi} \int_{1}^{2} x \cos (x y) d x d y=\int_{0}^{\pi}[?]_{x=1}^{x=2} d y
$$

Where ? is an anti-derivative of $x \cos (x y)$ with respect to x
Too hard! Could integrate by parts, but ain't nobody got time for that!
Second Try: Use Fubini!

$$
\begin{aligned}
\int_{0}^{\pi} \int_{1}^{2} x \cos (x y) d x d y & =\int_{1}^{2} \int_{0}^{\pi} x \cos (x y) d y d x \\
& =\int_{1}^{2}\left[x\left(\frac{\sin (x y)}{x}\right)\right]_{y=0}^{y=\pi} d x \\
& =\int_{1}^{2}[\sin (x y)]_{y=0}^{y=\pi} d x \\
& =\int_{1}^{2} \sin (x \pi)-\sin (x 0) d x \\
& =\int_{1}^{2} \sin (\pi x) d x \\
& =\left[\frac{-\cos (\pi x)}{\pi}\right]_{1}^{2} \\
& =-\left(\frac{\cos (2 \pi)}{\pi}\right)+\frac{\cos (\pi)}{\pi} \\
& =-\frac{1}{\pi}-\frac{1}{\pi} \\
& =-\frac{2}{\pi}
\end{aligned}
$$

4. Volume of a Ravioli

Video: Volume of a Ravioli

Finally, here is a nice trick for calculating integrals of the form $f(x) g(y)$:

Example 4:

Calculate the volume of a ravioli on $[0, \pi] \times\left[0, \frac{\pi}{2}\right]$ between the functions

$$
z=\sin (x) \cos (y) \text { and } z=-\sin (x) \cos (y)
$$

The picture looks similar to this:

Here the volume between $-\sin (x) \cos (y)$ and $\sin (x) \cos (y)$ is given by

$$
\iint \underbrace{\sin (x) \cos (y)}_{\text {Bigger }}-\underbrace{(-\sin (x) \cos (y))}_{\text {Smaller }}=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} 2 \sin (x) \cos (y) d x d y
$$

Useful Trick:

$$
\int_{c}^{d} \int_{a}^{b} f(x) g(y) d x d y=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{c}^{d} g(y) d y\right)
$$

Why?

$$
\int_{c}^{d} \int_{a}^{b} f(x) g(y) d x d y=\int_{c}^{d} g(y) \underbrace{\left(\int_{a}^{b} f(x) d x\right)}_{\text {Constant }} d y=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{c}^{d} g(y) d y\right)
$$

Here:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} 2 \sin (x) \cos (y) d x d y \\
= & 2\left(\int_{0}^{\pi} \sin (x) d x\right)\left(\int_{0}^{\frac{\pi}{2}} \cos (y) d y\right) \\
= & 2[-\cos (x)]_{0}^{\pi}[\sin (y)]_{0}^{\frac{\pi}{2}} \\
= & 2(-\cos (\pi)+\cos (0))\left(\sin \left(\frac{\pi}{2}\right)-\sin (0)\right) \\
= & 2(1+1)(1-0) \\
= & 4
\end{aligned}
$$

\lfloor This ONLY works if a, b, c, d are constants, do NOT attempt this on integrals where the endpoints are variable, like:

$$
\int_{0}^{1} \int_{x^{2}}^{8-x^{2}} f(x) g(y) d y d x \neq\left(\int_{0}^{1} f(x) d x\right)\left(\int_{x^{2}}^{8-x^{2}} g(y) d y\right)
$$

