
LECTURE 2: RATIONAL AND REAL NUMBERS

Let’s get real and talk about real numbers! Just like we did for N, we
can again define R in terms of axioms. In other words, what properties
make R so special?

1. What is a field?

Video: What is a field?

First of all, what distinguishes R from N (or Z) is that R is a field:

Definition:

A field F is a set equipped with two operationsa addition + and
multiplication · such that the following properties are true.

Addition Axioms:

(A0) a, b ∈ F ⇒ a+ b ∈ F (closed under +)

(A1) (a+ b) + c = a+ (b+ c) (associativity)

(A2) a+ b = b+ a (commutativity)
aThat is, functions from F× F to F

Date: Thursday, September 2, 2021.
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https://youtu.be/ZRpe7Agp0Z4
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(A3) There is an element 0 ∈ F such that a+ 0 = 0 + a = a for
all a ∈ F (zero-element)

(A4) For all a ∈ F there is an element −a ∈ F such that a +
(−a) = (−a) + a = 0 (additive inverse)

Multiplication Axioms:

(M0) a, b ∈ F ⇒ ab ∈ F (closed under ·)

(M1) (ab)c = a(bc) (associativity)

(M2) ab = ba (commutativity)

(M3) There is an element 1 ∈ F such that a1 = 1a = a for all
a ∈ F (1-element)

(M4) For all a ̸= 0 there exists an element a−1 ∈ F such that
aa−1 = a−1a = 1

Distributive law:

(DL) a(b+ c) = ab+ ac, (a+ b)c = ac+ bc

Examples: R (of course), but also Q (rational numbers), C (complex
numbers) and even {0, 1} (with addition defined as 1 + 1 = 0).

Non-Examples: N (if n ∈ N then −n /∈ N), Z (if m ∈ Z, then
m−1 /∈ Z), so already this distinguishes R from N and Z

Hopefully those axioms are “obvious” to you; they are meant to be
a good model of R, and in fact a lot of properties of R are true for
general fields. Here are some natural consequences of our axioms:
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Theorem:

The following properties are true in any field F.

(1) a+ c = b+ c ⇒ a = b (cancellation law)

(2) If a ̸= 0, then ab = ac ⇒ b = c (another cancellation law)

(3) a0 = 0

(4) (−a)b = −ab

(5) (−a)(−b) = ab

(6) ab = 0 ⇒ a = 0 or b = 0 (F is an integral domain)

Proof:
(1)

a+ c =b+ c

⇒ (a+ c)+(−c) =(b+ c)+(−c)

⇒ a+ (c+ (−c)) =b+ (c+ (−c)) (Associativity)

⇒ a+ 0 =b+ 0 (Definition of −c)

⇒ a =b (Definition of 0)

(2) Similar (Multiply by a−1)

(3) First of all, by definition of 0, we have 0+ 0 = 0 (you’re adding
nothing to 0). Now consider 0 + a0:

0 + a0

=a0 (Definition of 0)

=a(0 + 0)

=a0 + a0 (Distributivity)
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Hence 0 + a0 = a0 + a0, and canceling out a0 (by (1)) we get
0 = a0, so a0 = 0

(4) Consider

ab+ (−a)b

=(a+ (−a))b (Distributivity)

=0b (Definition of −a)

=0 (By (3))

Hence ab + (−a)b = 0, so (−a)b is the additive inverse of ab,
that is, (−a)b = −ab (by definition of −ab)

(5) Skip (basically apply (4) twice)

(6) Suppose ab = 0 but a ̸= 0, then

ab =0

a−1(ab) =a−1(0)(
a−1a

)
b =0 (Associativity and (1))

1b =0 (Definition of a−1)

b =0 (Definition of 1)

□

Note: If you’re interested in learning more about fields, make sure to
take a course in Abstract Algebra.
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2. Ordered Fields

Video: Ordered Fields

That said, there is more to R than just being a field. In particular,
notice that in R we can compare elements, like saying 2 ≤ 3. This dis-
tinguishes R from its parent C, because we cannot compare complex
numbers, see this optional video as to why:

Optional Video: Can we compare complex numbers?

Definition:

A field F is called an ordered field if it has a structurea ≤ that
satisfies the following.

(O1) Either a ≤ b or b ≤ a (Trichotomy)

(O2) a ≤ b and b ≤ a ⇒ a = b (also Trichotomy)

(O3) a ≤ b and b ≤ c ⇒ a ≤ c (Transitivity)

(O4) a ≤ b ⇒ a+ c ≤ b+ c (Addition preserves order)

(O5) a ≤ b and 0 ≤ c ⇒ ac ≤ bc (Nonnegative multiplication
preserves order)

aThat is, a function from F× F to { True , False }

Note: a≥b is defined to be b ≤ a and a<b means “a ≤ b and a ̸= b”
(Similar for a > b)

Examples: R and Q

https://youtu.be/6mc5E6x7FMQ
https://www.youtube.com/watch?v=acCGhA-n5z8
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Non-Examples: Z (not a field), C (cannot order elements)

And of course, from those axioms one can prove other neat facts:

Theorem:

The following properties are true in any ordered field F. Here
a, b, c are arbitrary elements in F:

(1) a ≤ b ⇒ −a ≥ −b

(2) a ≤ b and c ≤ 0 ⇒ ac ≥ bc

(3) b ≥ 0 and c ≥ 0 ⇒ bc ≥ 0

(4) a2 ≥ 0

(5) 0 < 1

(6) a > 0 ⇒ a−1 > 0

(7) a > b > 0 ⇒ a−1 < b−1

Proof:
(1)

a ≤b

⇒ a+ ((−a) + (−b)) ≤b+ ((−a) + (−b)) (Since + preserves order)

−b ≤− a

−a ≥− b (By definition of ≥)

(2) First note that if c ≤ 0, then −c ≥ 0 (by (1)), but then, by
(O5),
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a ≤b

(−c)a ≤(−c)b

−ac ≤− bc

ac ≥bc (By (1))

(3) This is just (O5) with a = 0

(4) By trichotomy, we know either a ≥ 0 or a ≤ 0.

Case 1: If a ≥ 0, then by (O5), we get aa ≥ a0, so a2 ≥ 0 ✓

Case 2: If a ≤ 0, then by (2), we get aa≥ a0, so a2 ≥ 0 ✓

So in any case a2 ≥ 0

(5) Follows from (4) because 1 = 12 ≥ 0, so to conclude, all that’s
left to show is that 1 ̸= 0 (skip)

(6) Suppose a > 0 but a−1 ≤ 0. Since a ≥ 0, we have aa−1 ≤ a0,
so 1 ≤ 0, but this contradicts (5) ⇒⇐

(7) (Skip; Start with a < b and multiply by b−1 and then by a−1)

Now you may have noticed that everything above is not just valid for
R, but also for Q. In particular being an ordered field isn’t what makes
R so special.

But then what makes R so special? Unfortunately we won’t be able to
fully answer that question until section 4, but let me already tell you
the answer.
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Definition:

A subfield B is a subset A ⊆ B that is also a field. (kind of like
a subspace of a vector space in Linear Algebra)

Example: Q is a subfield of R since Q ⊆ R and Q is a field

Here is what makes R so special:

Fact:

There exists an ordered field called R that contains Q as a subfield
and which satisfies the least upper bound property (see section 4)

Note: In this course we’ll take R as a given, but I’d like to point out
that there is an explicit construction of R in section 6 (which we won’t
go over)

Again, the least upper bound property will be discussed in section 4,
but intuitively it is saying that, unlike Q, R has no holes, as in the
following picture:
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In some sense, Q has lots of gaps, but R fills those gaps, that’s why R
is so much nicer than Q.

3. Triangle Inequality

Video: Triangle Inequality

Related to this, I would like to remind you of the most important in-
equality in this course: the triangle inequality. For this, let’s recall the
concept of absolute value from Calculus 1

Definition:

|x| =

{
x if x ≥ 0

−x if x ≤ 0

https://youtu.be/Cc7PeuDa2Zo
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From this one can show things like |x| ≥ 0 for all x (use the definition)
and |ab| = |a| |b| (do it by cases, for example a ≥ 0 and b ≥ 0, see
book), and most importantly:

Triangle Inequality:

|a+ b| ≤ |a|+ |b|

Proof:

STEP 1: We first need a small lemma:

Lemma:

− |x| ≤ x ≤ |x|
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Proof of Lemma:

Case 1: x ≥ 0, then |x| = x so

− |x| ≤ 0 ≤ x = |x|✓

Case 2: x ≤ 0, then |x| = −x, so x = − |x|, so

− |x| = x ≤ 0 ≤ |x|✓

STEP 2: By the Lemma, we have a ≤ |a| and b ≤ |b|

Now, add b to both sides of a ≤ |a| to get a+ b ≤ |a|+ b ≤ |a|+ |b|

Similarly, we have a ≥ − |a| and b ≥ − |b|

So add b to both sides of a ≥ − |a| to get a+b ≥ − |a|+b ≥ − |a| − |b| =
− (|a|+ |b|)

Therefore we have:

− (|a|+ |b|) ≤ a+ b ≤ |a|+ |b|

STEP 3: Finally, to prove |a+ b| ≤ |a|+ |b|, we do it by cases:

Case 1: If a+ b ≥ 0, then |a+ b| = a+ b ≤ |a|+ |b| (by STEP 2) ✓

Case 2: If a + b ≤ 0, then |a+ b| = −(a + b) ≤ − (− (|a|+ |b|)) (by
STEP 2) = |a|+ |b|. ✓

So in both cases we have the desired result □
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Why is it called the triangle inequality? This will be clearer after the
next result

Definition:

dist(a, b) = |a− b|

Note: This is sometimes written as d(a, b)

Corollary:

dist(a, c) ≤ dist(a, b) + dist(b, c)
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Proof:

dist(a, c) = |a− c|
= |a−b+ b− c|
= |(a− b) + (b− c)|
≤ |a− b|+ |b− c|
=dist(a, b) + dist(b, c)

Important Note: This trick with adding/subtracting b is SUPER im-
portant and will be used many times over!!!

Note: This corollary explains why the triangle inequality is called as
such. It says that the sum of the lengths of two legs of a triangle is
always greater than or equal to the length of the third one. In this
picture, the green segment is smaller than the sum of the red and blue
ones:

A less useful inequality to note is the
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Reverse Triangle Inequality:

|a− b| ≥ ||a| − |b||

Example:

|3− (−5)|︸ ︷︷ ︸
8

≥ ||3| − |−5|| = |3− 5| = 2

Proof: See the next HW

Note: The reverse triangle inequality sounds useful but is actually
really useless, it rarely works.
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4. Rational Roots Theorem (optional)

Video: Rational Roots Theorem

Let’s now go back to rational numbers and explore some useful prop-
erties, although we won’t really use them in this course. The next
theorem explains why we care about algebraic numbers (= roots of
polynomials):

Rational Roots Theorem:

Suppose that the polynomial

anx
n + · · ·+ a1x+ a0 = 0

with integer coefficients has a rational root, that is a zero of
the form x = p

q where p and q are integers with q ̸= 0 and no
common factors

Then p divides a0 (constant term) and q divides an (leading term)

This theorem is useful for finding roots of polynomials:

Example 1:

Find a root of x3 + 3x2 − 14x+ 8

Here a0 = 8 and a3 = 1. The theorem says that if x = p
q is a root,

then p must divide 8 (so p = ±1,±2,±4,±8), and q must divide 1 (so
q = ±1), which gives the following choices for x = p

q

https://youtu.be/afCJ3ehcOFY
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x = ±1,±2,±4,±8

Let’s plug in your choices one by one in x3 + 3x2 − 14x + 8 and see
which one (if any) gives you zero.

x = 1 13 + 3(1)2 − 14(1) + 8 = −2 ̸= 0
x = −1 −1 + 3 + 14 + 8 = 24 ̸= 0
x = 2 8 + 3(4)− 28 + 8 = 0 BAZINGA!

Hence x = 2 is a root!

Remarks:

(1) Once you have a root, you can then use long division to factor
out the polynomial. Here for instance we get: x3+3x2−14x+8 =
(x− 2)(x2 + 5x− 4). In case you’re interested, here is a plot of
our function (the rational root we found is in red and the other
two roots are in green)
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(2) If none of the guesses work, this means that the polynomial has
no rational roots. It could still have irrational roots, though, as
for instance x2 + x+ 1 = 0 for example.

(3) It’s useful to have the polynomial x2 − 4 in mind, which has
roots x = ±2, in case you forget the order in which the rational
roots theorem works.

5. Rational or Irrational (optional)

Video:
√

2 +
√
2 is irrational

Another application is showing that a given number is irrational.

Example 2:

Show x =
√

2 +
√
2 is irrational

Note: It’s much easier in my opinion just to prove this using contra-
diction, but the method below is meant to illustrate the rational roots
theorem.

First, find a polynomial whose root is x:

x =

√
2 +

√
2

⇒x2 = 2 +
√
2

⇒x2 − 2 =
√
2

⇒
(
x2 − 2

)2
= 2

https://youtu.be/9LHaJNwBh7U
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⇒x4 − 4x2 + 4 = 2

⇒x4 − 4x2 + 2 = 0

Now if x4 − 4x2 + 2 has a rational root of the form x = p
q , then p

divides 2 (so p = ±2) and q divides 1 (so q = ±1), which gives the
choices

x = ±1,±2

x = 1 14 − 4(1)2 + 2 = −1 ̸= 0
x = −1 −1 ̸= 0
x = 2 16− 16 + 2 = 2 ̸= 0
x = −2 2 ̸= 0

So none of the choices work ⇒⇐

Therefore x4 − 4x2 + 2 has no rational roots. But since x =
√

2 +
√
2

is for sure a root, it follows that
√

2 +
√
2 must irrational □

6. Proof of the Rational Roots Theorem

(optional)

Video: Rational Roots Theorem Proof

Note: You might be tempted to skip over proofs of theorems in this
course, but in this upper-division math you have to look at them. I
could very well ask you on the exam to reprove theorems.

Before we prove the rational roots theorem, we need a small lemma
from number theory:

https://youtu.be/zMQ-E7D7t30
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Lemma:

If a divides bc, and a and b have no factors in common, then a
must divide c

Example: 5 divides (12)(25), but 5 and 12 have no factors in com-
mon, so 5 divides 25

Proof of the Rational Roots Theorem:

STEP 1: Suppose x = p
q is a root of anx

n + · · · + a1x + a0 where p
and q have no factors in common.

Then:

an

(
p

q

)n

+ an−1

(
p

q

)n−1

· · ·+ a1

(
p

q

)
+ a0 =0

an

(
pn

qn

)
+ an−1

(
pn−1

qn−1

)
· · ·+ a1

(
p

q

)
+ a0 =0

anpn + an−1p
n−1q + · · ·+ a1pq

n−1 + a0q
n

qn
=0

(⋆) anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0

Goal: Show p divides a0 and q divides an.

STEP 2: On the one hand, solving for anp
n in (⋆), we get:

anp
n =− an−1p

n−1q − · · · − a0q
n

anp
n =− q

(
an−1p

n−1 + · · ·+ a0q
n−1

)
Since q divides the term on the right-hand-side, it follows that q di-
vides anp

n.
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But since q and pn also have no factors in common, it then follows
from our lemma that q divides an

STEP 3: On the other hand, solving for a0q
n in (⋆), we get:

anp
n + · · ·+ a1pq

n−1 + a0q
n = 0

a0q
n = −anp

n − · · · − a1pq
n−1

a0q
n = −p

(
anp

n−1 + · · ·+ a1q
n−1

)
Since p divides the right-hand-side, we get that p divides a0q

n, and since
p and qn have no factors in common, we deduce that p divides a0 □
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