
LECTURE 2: VECTORS AND DOT PRODUCTS

Welcome to the magical world of vectors, which are useful compan-
ions in our multivariable adventure. This topic calls for an obligatory
Skyrim joke: “Today I learned about vectors, but then I took an arrow
to the knee”

1. Definition

Definition:

A vector is an arrow with 2 (or 3) components

Example 1:

Draw a = ⟨2, 3⟩

All you need to do is draw an arrow that goes 2 units to the right and
3 units up:

Date: Wednesday, September 1, 2021.
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Example 2:

Draw b = ⟨−2,−1⟩

This time you go 2 units to the left and 1 unit down

Warning: Do not confuse the vector ⟨−2,−1⟩ with the point (−2,−1).
Unlike points, vectors have a sense of direction (here right/left and
up/down).

Of course, you can do the same thing in 3 dimensions

Example 3:

Draw c = ⟨2,−2, 5⟩

Here you go 2 units to the front, 2 units to the left, and then 5 units
up.
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You can even find vectors connecting two points

Example 4:

Draw the vector a from (1, 2) to (3, 4)

a = ⟨3− 1, 4− 2⟩ = ⟨2, 2⟩
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Note: The order matters here; do not confuse this with ⟨1− 3, 2− 4⟩ =
⟨−2,−2⟩, which goes the other way around

2. Applications

The world of vectors is filled with applications:

(1) A velocity vector represents the direction and magnitude in
which a person or an object is moving
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Here the person is walking northeast with a speed of 2 mph
both to the right and up.

(2) The force that an object exerts on another can be represented
by a force vector; think gravity for example

For example, in engineering, if the force acting on a bridge is
too big, it might collapse!

(3) Also appears in electricity and magnetism

(4) Even appears in economics, describes the “trend” of a certain
company. For instance, if a company sells Apples and Bananas,
the graph below shows that the current trend is for the company
to produce more Bananas than Apples
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3. Basic Operations

Given two vectors, what can we do to them? Just like for points, we
can add them:

Example 5: (Addition)

If a = ⟨1, 2⟩ and b = ⟨3, 4⟩, then

a+ b = ⟨1 + 3, 2 + 4⟩ = ⟨4, 6⟩

You can represent this as gluing the two vectors together (not drawn
to scale)

You can also multiply a vector by a number
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Example 6: (Scalar Multiplication)

If a = ⟨1, 2⟩, then:

3a =3 ⟨1, 2⟩ = ⟨3, 6⟩
−a =− ⟨1, 2⟩ = ⟨−1,−2⟩
−2a =− 2 ⟨1, 2⟩ = ⟨−2,−4⟩

Notice all those vectors lie on the same line, but −a and −2a go in the
opposite direction.

Note: Facts like a+ b = b+ a are still true for vectors.

You can also subtract two vectors, which has a nice geometric inter-
pretation
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Example 7: (Subtraction)

If a = ⟨1, 2⟩ and b = ⟨3, 4⟩, then

a− b = ⟨1− 3, 2− 4⟩ = ⟨−2,−2⟩

Interpretation: If you compare the picture with the one with a+ b,
notice that a+ b and a− b are the diagonals of the parallelogram
formed by a and b.
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Example 8: (Parallel Vectors)

Consider a = ⟨1, 2⟩ and b = ⟨3, 6⟩

Notice b = 3a. Also, geometrically, a and b are parallel, as in the
following figure



10 LECTURE 2: VECTORS AND DOT PRODUCTS

Definition: (Parallel Vectors)

a and b are parallel if b = c a for some real number c (or a = c b
for some c)

In other words, one vector is a multiple of the other one.

Example 9:

Are the following vectors parallel?

(a) ⟨2, 4⟩ and ⟨−4,−8⟩

(b) ⟨3, 5⟩ and ⟨2, 9⟩

(c) ⟨1, 5, 2⟩ and ⟨3, 15, 6⟩

Answers:

(a) Yes, ⟨−4,−8⟩ = (−2) ⟨2, 4⟩ (negative numbers are ok)

(b) No, ⟨2, 9⟩ is not a multiple of ⟨3, 5⟩

(c) Yes, ⟨3, 15, 6⟩ = 3 ⟨1, 5, 2⟩

4. Lengths

Another special operation you can do to a vector is to take its length

Example 10:

Find the length ∥a∥ of a = ⟨1, 2⟩
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Definition:

∥a∥ = ∥⟨1, 2⟩∥ =
√

12 + 22 =
√
5

Think Pythagorean theorem, it’s the length of the hypotenuse of a
triangle with sides 1 and 2

Note: The book uses |a| instead of ∥a∥, but this can be easily con-
fused with |x| (absolute value).

Example 11:

Find ∥b∥, where b = ⟨−3, 4⟩

∥b∥ =
√
(−3)2 + 42 =

√
9 + 16 =

√
25 = 5

This also works in higher dimensions
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Example 12:

Find ∥a∥, where a = ⟨1, 2, 4⟩

∥a∥ =
√
12 + 22 + 42 =

√
1 + 4 + 16 =

√
21

It is sometimes useful to produce vectors of length 1 (called unit vec-
tors). Luckily, this is easy to do:

Fact:
a
∥a∥ always has length 1

Example 13:

If a = ⟨1, 2⟩, then

∥a∥ =
√

12 + 22 =
√
5

a

∥a∥
=

1√
5
⟨1, 2⟩ =

〈
1√
5
,
2√
5

〉

What makes this special is that the new “normalized” vector has the
same direction as the original one, but now it has length 1 (think same
direction, but smaller magnitude)
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Example 14:

Normalize b = ⟨2, 0, 3⟩

∥b∥ =
√
22 + 0 + 32 =

√
4 + 9 =

√
13

b

∥b∥
=

1√
13

⟨2, 0, 3⟩ =
〈

2√
13

, 0,
3√
13

〉

Proof of Fact: It’s a one-liner! Just calculate the length of:

∥∥∥∥ a

∥a∥

∥∥∥∥ =

∥∥∥∥ 1

∥a∥
a

∥∥∥∥ =
1

∥a∥
∥a∥ = 1



14 LECTURE 2: VECTORS AND DOT PRODUCTS

Definition:

The standard unit vectors (in 2 dimensions) are

i = ⟨1, 0⟩ and j = ⟨0, 1⟩

And in 3 dimensions they are

i = ⟨1, 0, 0⟩ , j = ⟨0, 1, 0⟩ ,k = ⟨0, 0, 1⟩

Example 15:

5i+ 6j− 7k = ⟨5, 6,−7⟩

5. Crazy Physics Problem

Finally, since vectors arise in physics and engineering, let’s solve an
application problem with them.

Warning: This problem is a little bit involved and likely optional for
the quizzes and exams (unless mentioned otherwise)
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Example 16:

A 10-lb weight hangs from two wires as shown in the picture
below. Find the forces a and b, as well as their lengths ∥a∥ and
∥b∥.

STEP 1: Find a

Let’s focus on the left-hand-side of the picture:
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(Because of alternating angles, the angle on the bottom left of the pic-
ture is also 50◦).

Now focus on the right triangle formed by a in the picture below.
Let’s call the sides x and y, and the hypotenuse is by definition ∥a∥
(the length of the vector a)
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By SOHCAHTOA, we have:

cos(50) =
x

∥a∥
⇒ x = ∥a∥ cos(50)

sin(50) =
y

∥a∥
⇒ y = ∥a∥ sin(50)

And therefore, we get

a = ⟨−x, y⟩ = ⟨− ∥a∥ cos(50), ∥a∥ sin(50)⟩

(We put a minus sign because a goes to the left, not to the right)

STEP 2: Find b

Similarly, we get

b = ⟨∥b∥ cos(30), ∥b∥ sin(30)⟩

(Here we have a plus sign because b goes to the right)

So all that is left to find is ∥a∥ and ∥b∥. Once we found those, then
we’re done since the above equations give us a and b.

STEP 3: Find ∥a∥ and ∥b∥.

(Notice so far we haven’t used the weight at all)

Let F be the force that the weight exerts on the wire. Since the weight
is 10lbs and is pulling down the wire, we have

F = ⟨0,−10⟩
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Important Observation:

Since the weight counterbalances forces a and b the two wires,
we must have:

a+ b = −F = −⟨0,−10⟩ = ⟨0, 10⟩

And using our equations for a and b from STEPS 1 and 2, this gives:

⟨− ∥a∥ cos(50), ∥a∥ sin(50)⟩︸ ︷︷ ︸
a

+ ⟨∥b∥ cos(30), ∥b∥ sin(30)⟩︸ ︷︷ ︸
b

= ⟨0, 10⟩

Comparing components, this tells us we need to solve the system:
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{−∥a∥ cos(50) + ∥b∥ cos(30) =0

∥a∥ sin(50) + ∥b∥ sin(30) =10

Using this and some algebra (which I’ll skip here), we can solve for
∥b∥ in terms of ∥a∥ and ultimately find:

∥a∥ =
10

sin(50) + tan(30) cos(50)
≈ 8.79 lbs

∥b∥ =
∥a∥ cos(50)
cos(30)

≈ 6.53 lbs

STEP 4: Using the equations in STEPS 1 and 2, we ultimately get

a = ⟨− ∥a∥ cos(50), ∥a∥ sin(50)⟩ ≈ ⟨−5.65, 6.73⟩

b = ⟨∥b∥ cos(30), ∥b∥ sin(30)⟩ ≈ ⟨5.65, 3.27⟩

6. The Dot Product

Let’s move on to a useful way of multiplying vectors, called the dot
product

Example 17:

Let a = ⟨1, 2⟩ and b = ⟨3, 4⟩
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Definition:

a · b = (1)(3) + (2)(4) = 3 + 8 = 11

Note: a · b is a number, not a vector. It intuitively measures how
“close” a and b are (see below)

Example 18:

⟨2,−3⟩ · ⟨4, 8⟩ = (2)(4) + (−3)(8) = 8− 24 = −16

(The dot product can be negative)

Example 19:

⟨1, 2, 3⟩ · ⟨4, 5, 6⟩ = (1)(4) + (2)(5) + (3)(6) = 4 + 10 + 18 = 32

Example 20:

Calculate a · a and ∥a∥, where a = ⟨1, 2, 3⟩

a · a = ⟨1, 2, 3⟩ · ⟨1, 2, 3⟩ = 12 + 22 + 32 = 14

∥a∥ =
√

12 + 22 + 32 =
√
14

Notice those two are related! In fact:

Fact:

a · a = ∥a∥2
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(We’ll use this fact at the end)

7. Applications

There are many ways in which the dot product is useful:

(1) Perpendicular: First of all, it gives us a 1 second way of checking
if two vectors are perpendicular.

Example 21:

Calculate a · b, where a = ⟨1, 1⟩ and b = ⟨1,−1⟩

⟨1, 1⟩ · ⟨1,−1⟩ = (1)(1) + (1)(−1) = 0

But also notice that a and b are perpendicular!

This is always true:

Fact:

a and b are perpendicular ⇔ a · b = 0
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Example 22:

Are the following two vectors perpendicular?

a = ⟨1, 2, 7⟩ ,b = ⟨3, 2,−1⟩

⟨1, 2, 7⟩ · ⟨3, 2,−1⟩ = (1)(3) + (2)(2) + (7)(−1) = 3 + 4− 7 = 0✓

Hence they are perpendicular.

Example 23:

For which t are the following vectors perpendicular

a = ⟨t, 5,−1⟩ ,b = ⟨t, t,−6⟩

a · b = ⟨t, 5,−1⟩ · ⟨t, t,−6⟩
=(t)(t) + (5)(t) + (−1)(−6)

=t2 + 5t+ 6

=(t+ 2)(t+ 3)

=0

Which is true if and only if t = −2 or t = −3.

(2) Geometric Interpretation: As mentioned above, the dot prod-
uct measures how “close” two vectors are in terms of directions. In
fact, consider the following 3 scenarios:
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In the first scenario, a and b are close to each other, so their dot prod-
uct is big

In the second scenario, a and b are perpendicular, so their dot product
is 0

Finally, in the last scenario, a and b point away from each other so
their dot product is large and negative (think −10000)

(the length of a and b also play a role, as in the formula below)

(3) Angles: In fact, one can even use the dot product to find the
angle between two vectors.

Example 24:

Find the angle between a = ⟨1, 2, 3⟩ and b = ⟨0, 1,−2⟩
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Angle Formula:

a · b = ∥a∥ ∥b∥ cos(θ)

Here:

a · b =(1)(0) + (2)(1) + (3)(−2) = 2− 6 = −4

∥a∥ =
√

12 + 22 + 32 =
√
14

∥b∥ =
√

02 + 12 + (−2)2 =
√
5

Therefore the angle formula gives:

−4 =
√
14
√
5 cos(θ)

−4 =
√
70 cos(θ)

cos(θ) =
−4√
70

θ =cos−1

(
−4√
70

)
θ ≈119◦

(4) Physical Interpretation: If F is a Force andD is a displacement
vector, then F ·D is the work done of F on D.
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Example 25:

Find the work done of a force F of 70 N on a displacement D of
100 m, given that the angle is 35◦

By the definition of work and the angle formula, we have

W =F ·D
= ∥F∥ ∥D∥ cos(θ)
=70× 100× cos(35◦)

≈5734 N · m

(And N · m is sometimes called Joules, J)
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Example 26:

Find the work done when a force F = ⟨2, 0, 3⟩ moves an object
from A = (1, 2, 4) to B = (3, 5, 0)

The displacement is D =
−→
AB = ⟨3− 1, 5− 2, 0− 4⟩ = ⟨2, 3,−4⟩.

Therefore, by the definition of work, we have

W = F ·D = ⟨2, 0, 3⟩ · ⟨2, 3,−4⟩ = 4 + 0− 12 = −8

8. Vector Projection

Here is the most important application of dot products: It allows us
to project (or squish) a vector on another one

Motivation:

Let b = ⟨3, 4⟩ and a = ⟨1, 3⟩ be two vectors

Consider the line L that goes through (0, 0) and with slope a = ⟨1, 3⟩:

Now look at b (which is not L).
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Notice: There are many ways of projecting (squishing) b on the line

L, but only one that seems optimal, which is called b̂

Definition:

b̂ (or proja b) is the vector projection of b on a
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Note: This is sometimes called the orthogonal projection. Why or-
thogonal? Because it’s precisely the vector on L such that b− b̂ and
a are orthogonal.

How to calculate b̂?

First of all, b̂ is parallel to a, and so

b̂ = (JUNK) a

This is important! b̂ is a multiple of a, NOT a multiple of b.

Here is the formula for b̂. We will derive it later.

Vector Projection Formula:

proja b = b̂ =

(
b · a
a · a

)
a

How to remember this?

(1) b̂ is a multiple of a, so b̂ = (JUNK) a
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(2) Hugging Analogy: b hugs a to get b · a, and then a is so
happy that it hugs itself to get a · a

Example 27:

Calculate proja b = b̂, where a = ⟨1, 3⟩ and b = ⟨3, 4⟩

You’re projecting/squishing b on a and so

b̂ =

(
b · a
a · a

)
a

=

(
⟨3, 4⟩ · ⟨1, 3⟩
⟨1, 3⟩ · ⟨1, 3⟩

)
⟨1, 3⟩

=
15

10
⟨1, 3⟩

=
3

2
⟨1, 3⟩

=

〈
3

2
,
9

2

〉
Example 28:

Calculate proja b, where a = ⟨3, 6,−2⟩ and b = ⟨1, 2, 3⟩

proja b = b̂ =

(
b · a
a · a

)
a

=

(
⟨1, 2, 3⟩ · ⟨3, 6,−2⟩
⟨3, 6,−2⟩ · ⟨3, 6,−2⟩

)
⟨3, 6,−2⟩

=
9

49
⟨3, 6,−2⟩

=

〈
27

49
,
54

49
,
−18

49

〉
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Why this formula works: It’s not too bad if you remember the
following picture:

STEP 1: First of all, remember that b̂ is a multiple of a, so for some
constant c, we have

b̂ = c a

STEP 2: Now remember that b− b̂ and a are perpendicular, so(
b− b̂

)
· a =0

(b− c a) · a =0

b · a− c(a · a) =0

c(a · a) =b · a

c =
b · a
a · a

Hence

b̂ = c a =

(
b · a
a · a

)
a
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9. Scalar Projection

Related to vector projection, there is the concept of scalar projec-
tion, which we’ll examine now. More precisely, let’s look back at our
picture with b̂:

Intuitively: the scalar projection compa b is defined to be the (green)
leg of the triangle with hypotenuse ∥b∥ and angle θ above.

Derivation: By SOHCAHTOA, we have

cos(θ) =
compa b

∥b∥
⇒ compa b = ∥b∥ cos(θ)

The only issue is that this depends on the unknown angle θ, but using
the following trick we can get rid of it:
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compa b = ∥b∥ cos(θ)

= ∥b∥ cos(θ)∥a∥
∥a∥

=
∥a∥ ∥b∥ cos(θ)

∥a∥

=
a · b
∥a∥

(Angle Formula)

Therefore, we obtain:

Scalar Projection Formula:

compa b =
a · b
∥a∥

Example 29:

Calculate compa b, where a = ⟨1, 3⟩ and b = ⟨3, 4⟩

a · b
∥a∥

=
⟨1, 3⟩ · ⟨3, 4⟩
∥⟨1, 3⟩∥

=
(1)(3) + (3)(4)√

12 + 32
=

15√
10

=
15
√
10

10
=

3
√
10

2

Example 30:

Calculate compa b, where a = ⟨1,−4, 2⟩ and b = ⟨3, 8, 4⟩

compa b =
a · b
∥a∥

=
3− 32 + 8√
1 + 16 + 4

=
−21√
21

= −
√
21
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10. Application of Projections

Why care about projections? Here are some nice applications

Example 31:

Let b = ⟨3, 4⟩ and a = ⟨1, 3⟩

Previously we found that:

b̂ = proja b =

〈
3

2
,
9

2

〉
and compa b =

3
√
10

2

Application 1: Projections are useful to find a vector that’s perpen-
dicular to a given one.

(a) Find a vector that’s perpendicular to a = ⟨1, 3⟩

According to the picture above, the answer is precisely b− b̂

Answer: b− b̂ = ⟨3, 4⟩ −
〈
3

2
,
9

2

〉
=

〈
3

2
,−1

2

〉
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Note: Of course here you could directly just guess ⟨−3, 1⟩, but the
point is that this technique works in any dimensions.

Application 2: We can use projections to find the shortest distance
from a point to a line.

(b) Find the (shortest) distance from the point (3, 4) to the line
L containing a = ⟨1, 3⟩

Again according to the picture, the answer is the length of the vector

found in (a), that is
∥∥∥b− b̂

∥∥∥:
Answer:

∥∥∥b− b̂
∥∥∥ =

∥∥∥∥〈3

2
,−1

2

〉∥∥∥∥ =

√
10

2

Application 3: Finally, projections allow us to decompose vectors in
a way that is especially useful in physics.
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(c) Write b = ⟨3, 4⟩ as the sum of two vectors, one parallel to
a = ⟨1, 3⟩ and one perpendicular to a

Trick: b = b̂+ (b− b̂) =

〈
3

2
,
9

2

〉
︸ ︷︷ ︸
parallel to a

+

〈
3

2
,−1

2

〉
︸ ︷︷ ︸

perpendicular to a

Physics Interpretation:

If b is force and a is displacement, then:

b̂ is the tangential component of the force b (along a)

b−b̂ is the normal component of the force (perpendicular to a).

compa b = 3
√
10
2 is the (signed) length of the tangential component

of the force.
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So in (c), we effectively rewrote the force as the sum of a tangential
and normal components.
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