LECTURE 2: UNIFORM CONVERGENCE

1. THE SPACE Cla, b

What makes uniform convergence so powerful is that it allows us to
talk about distances between two functions:

Definition: C|a, b| is the set of continuous functions f : [a,b] — R

Definition: If f € C|a,b], then

LIl = sup {|f(2)|,x € [a, 0]}

This is sometimes called the sup-norm (or infinity norm) and is some-
times written as || f|| . or || f|l,

The distance between f and ¢ is nothing other than

If = gll = sup {|f () — g(2)], = € |a, b]}

|f — g|| measures the biggest possible spread between f and g (see
picture in lecture)

This distance turns C|a, b] into a metric space

Fact: (Cla,b],d) is a metric space, where d(f,g) = ||f — 4|
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Metric spaces were useful in Analysis 1 because they allowed us to talk
about convergence:

Reminder: z,, — x (in a metric space) if for all € > 0 there is N such
that if n > N then d(x,,x) < €

And in fact convergence in Cfa, b] is none other than uniform conver-
gence!

Fact: f, — f in Cla,b] < f, — f uniformly.

Proof: (=) Let € > 0 be given. Then since f, — f in Cla,b], there is
N such that if n > N then d(f,, f) < ¢, that is

sup {[fu(2) = f(@)], x € [a,b]} < ¢
(But if a sup is < ¢, then all its values are < €)

With the same N, n > N then for all z, we have |f,(z) — f(z)| < e,
so f, — f uniformly.

(<) Similar O

2. COMPLETENESS

Not only is this a metric space but it’s a complete metric space, it has
no holes:

Recall: (z,) is Cauchy if for all € > 0 there is N such that if m,n > N
then d(x,, z,,) < €
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(That is, the sequence eventually gets closer and closer to each other,
just like people gathering in a crowd)

Recall: A metric space is complete if every Cauchy sequence con-
verges.

Theorem: (C|a,b|,d) is complete

Proofil

STEP 1: Let f, be a Cauchy sequence in Cla, b)].
Claim: For every z, (f,(x)) is Cauchy (in R)

Why? Let € > 0 be given, then there is N such that if m,n > N then
d(fn, fm) < €. With that same N, if m,n > N then

(@) = fnl2)] < sup {[fu(x) = funl(2)], 2 € [a,b]} = d(fn, fin) <€

STEP 2: Since (f,(x)) is Cauchy in R, it converges. So for every z,
it makes sense to define

f(z) = lim f,(x)

n—oo

And, by definition, f, — f pointwise
STEP 3: Claim: f, — f uniformly

Why? Let € > 0 be given. Since (f,) is Cauchy, there is N such that
if m,n > N then

€
Afos F) < 5

Ihis proof is taken from Pugh’s Real Analysis book, Theorem 3 in Chapter 4
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Take that N and let x be given

Since f, — f pointwise, we know there is some m (depending on )
large enough such that |f,,(z) — f(z)| < § (think of it as a helper con-
stant)

Then, if n > N, we get

|fn(x) - f(x)‘ < |fn(x) - fm($)| + |fm(«r) - f(l’)‘ < §+ % =€

Where we have used Cauchiness and our helper constant respectrively.

Finally f € CJa,b] since the uniform limit of continuous functions is
continuous ]

Let’s isolate this as a separate fact, since we’ll use it often:

Fact: (f,) converges uniformly if and only if (f,,) is uniformly Cauchy,
that is for all € > 0 there is IV such that for all m,n > N and all z, we

have |f(z) — ful)] < €

(We have shown the if part, and the other part is a standard § argu-
ment)

3. UNIFORM CONVERGENCE AND DIFFERENTIATION
Using those new tools, let’s go back to differentiability:

Theorem: (Differentiability)

(1) Suppose f, is differentiable on [a,b] and f, — f uniformly
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(2) Moreover, suppose f; — g uniformly for some function g
(3) Then in fact f is differentiable and f’' = g.

Proof: Now let’s do the general case
STEP 1: In general, we need to work with difference quatz’entsﬂ

Fix some z € [a, b] and define
In()—fn(z ;
% if ¢ # i
fl(x) ift=u

Claim # 1: Each ¢, is continuous

¢n(t) -

Why? We only need to check that ¢, is continuous at x. But by
definition of the derivative, we have:

i (1) = lim 2200 — (2

t—zx t—=x

= fu(@) = du(2)V

Claim # 2: ¢, — ¢ pointwise, where

JOI@ sy
cb(t):{ S
g(x) ift=ux

Why? If t # x, then since f,, — f pointwise, we get
lim é,(t) = lim fu(t) — fu(z) _ f(t) — f(z)

n—00 n—00 t—=x t—=x

If t = x, then since f) — g, we get
. T / .
lim ¢, (2) = lim f, () = g(x)v

2you have dealt with difference quotients before when you proved the Chain Rule
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Claim # 3: ¢, — ¢ uniformly

Once we prove Claim # 3, we're done with the proof, because ¢,
continuous and ¢,, — ¢ uniformly implies ¢ is continuous, and hence

tim 2O =@y ) = o) = 9(0)

t—zx t—=x t—x

Hence f'(x) exists and equals g(z) v/

STEP 2: Proof of Claim # 3 Since it is difficult to deal with ¢,
directly, let’s use the Cauchy criterion, so consider:

_Sn() = ) fu(t) = fulz)

Gm(t) = Pu(t)

t—x t—x
:(fm - fn)(t) _ (fm - fn)(x)
t—x
= (fm _ fn)/ (C)

=fm(e) = fu(c)

(If t = z, we get the same result)

Where we used the Mean Value Theorem applied to f,, — f., where c
is some number between x and g

Let € > 0 be given, then since f; — g, there is N such that for all
m,n > N we have ||f/ — fl|| <e.

With that N, if m,n > N we get for all ¢,

’¢m(t) - ¢n(t)| - ‘frln(c) - fé(c)l <€
Therefore ¢, converges uniformly to some function, which must be ¢
(since ¢,, already converges pointwise to ¢) ]
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4. SERIES OF FUNCTIONS

The cool thing is that everything we talked about also works series of
functions, provided we consider partial sums:

Definition: The series )~ fu(z) converges uniformly if the se-
quence of partial sums F),(x) converges uniformly, where

Fule) =3 filx)

(Rudin uses s, but here I want to emphasize that those are functions)

n

Example: > > x, converges uniformly for all z, and this series we

n=0 n!
call e”. See next chapter

Luckily, there is a very important way of checking if a series converges
uniformly. It’s kind of like a comparison test for series

Theorem: [Weierstrafl M-test|

Suppose for all x and all n,

[fu(2)] < My,

Where M, are constants. If Y M, converges, then > f, converges
uniformly (and absolutely, that is > | f,| converges)

So instead of checking that a series of functions converges, you just
need to check that a series of numbers converges.
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. 1 ;
Example: Does > —» converge uniformly?

Notice —1— < 45 =: M, and since > M, = > =5 converges, the orig-
inal series converges

Proof of Weierstrafl Let ¢ > 0 be given. Since > M,, converges, by

the Cauchy criterion for series, there is N such that if n > m > N
then

iMk < €
k=m

(Cauchy criterion just means that, after a long time, the tail of the
series is arbitrarily small)

With the same N, for all z, if n > m > N then

S @) <D @) <) My <e
k=m k=m k=m

So Y fr converges uniformly, again by the Cauchy criterion for series
and because N doesn’t depend on x ]

Just to show you again that series can behave weirdly, consider:

Non-Example: Let f,(z) = @ +;) and let
2Dy

Since f,,(0) = 0 we have f(0). But if x # 0 we have:
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- 1\ 1 1+ 22
025 () - () -+ (157) -+

1+22
Therefore the series converges to
0 iftx=0
f(l‘) — 2 .
142 ifz#0

So a convergent series of continuous functions might have a discontin-
uous sum.

5. INTEGRATION AND DIFFERENTIATION OF SERIES

What makes uniformly convergent series so nice is that they can be
integrated and differentiated term by term. So a lot of “illegal” op-
erations in calculus and physics are actually legitimate for uniformly
convergent series.

Theorem: [Term by Term Integration] If > f, converges uniformly
and each f,, is integrable, then

/ bf%fn(mx - i [ s

Proof: Consider the partial sum

2”:/; fr(x)dx

On the one hand, by definition of a series, as n — oo, the above
converges to
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By definition of a series, F,(z) converges uniformly to >, f.(z)dz,
so by the integration result from last time, we get

b b
/aFn—>/a nzofn(w)

Comparing the two limits, we get our desired result ]

Theorem: [Term by Term Differentiation] If >~ f, and > f] con-
verge uniformly, then

The proof is exactly the same as above, but with derivatives.
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