
LECTURE 2: UNIFORM CONVERGENCE

1. The space C[a, b]

What makes uniform convergence so powerful is that it allows us to
talk about distances between two functions:

Definition: C[a, b] is the set of continuous functions f : [a, b]→ R

Definition: If f ∈ C[a, b], then

‖f‖ = sup {|f(x)| , x ∈ [a, b]}

This is sometimes called the sup-norm (or infinity norm) and is some-
times written as ‖f‖∞ or ‖f‖0

The distance between f and g is nothing other than

‖f − g‖ = sup {|f(x)− g(x)| , x ∈ [a, b]}

‖f − g‖ measures the biggest possible spread between f and g (see
picture in lecture)

This distance turns C[a, b] into a metric space

Fact: (C[a, b], d) is a metric space, where d(f, g) = ‖f − g‖
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Metric spaces were useful in Analysis 1 because they allowed us to talk
about convergence:

Reminder: xn → x (in a metric space) if for all ε > 0 there is N such
that if n > N then d(xn, x) < ε

And in fact convergence in C[a, b] is none other than uniform conver-
gence!

Fact: fn → f in C[a, b]⇔ fn → f uniformly.

Proof: (⇒) Let ε > 0 be given. Then since fn → f in C[a, b], there is
N such that if n > N then d(fn, f) < ε, that is

sup {|fn(x)− f(x)| , x ∈ [a, b]} < ε

(But if a sup is < ε, then all its values are < ε)

With the same N , n > N then for all x, we have |fn(x)− f(x)| < ε,
so fn → f uniformly.

(⇐) Similar �

2. Completeness

Not only is this a metric space but it’s a complete metric space, it has
no holes:

Recall: (xn) is Cauchy if for all ε > 0 there is N such that if m,n > N
then d(xn, xm) < ε
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(That is, the sequence eventually gets closer and closer to each other,
just like people gathering in a crowd)

Recall: A metric space is complete if every Cauchy sequence con-
verges.

Theorem: (C[a, b], d) is complete

Proof:1

STEP 1: Let fn be a Cauchy sequence in C[a, b].

Claim: For every x, (fn(x)) is Cauchy (in R)

Why? Let ε > 0 be given, then there is N such that if m,n > N then
d(fn, fm) < ε. With that same N , if m,n > N then

|fn(x)− fm(x)| ≤ sup {|fn(x)− fm(x)| , x ∈ [a, b]} = d(fn, fm) < ε

STEP 2: Since (fn(x)) is Cauchy in R, it converges. So for every x,
it makes sense to define

f(x) =: lim
n→∞

fn(x)

And, by definition, fn → f pointwise

STEP 3: Claim: fn → f uniformly

Why? Let ε > 0 be given. Since (fn) is Cauchy, there is N such that
if m,n > N then

d(fn, fm) <
ε

2

1This proof is taken from Pugh’s Real Analysis book, Theorem 3 in Chapter 4
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Take that N and let x be given

Since fn → f pointwise, we know there is some m (depending on x)
large enough such that |fm(x)− f(x)| < ε

2 (think of it as a helper con-
stant)

Then, if n ≥ N , we get

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ε

2
+
ε

2
= ε

Where we have used Cauchiness and our helper constant respectrively.

Finally f ∈ C[a, b] since the uniform limit of continuous functions is
continuous �

Let’s isolate this as a separate fact, since we’ll use it often:

Fact: (fn) converges uniformly if and only if (fn) is uniformly Cauchy,
that is for all ε > 0 there is N such that for all m,n > N and all x, we
have |fm(x)− fn(x)| < ε

(We have shown the if part, and the other part is a standard ε
2 argu-

ment)

3. Uniform Convergence and Differentiation

Using those new tools, let’s go back to differentiability:

Theorem: (Differentiability)

(1) Suppose fn is differentiable on [a, b] and fn → f uniformly
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(2) Moreover, suppose f ′n → g uniformly for some function g

(3) Then in fact f is differentiable and f ′ = g.

Proof: Now let’s do the general case

STEP 1: In general, we need to work with difference quotients2

Fix some x ∈ [a, b] and define

φn(t) =

{
fn(t)−fn(x)

t−x if t 6= x

f ′n(x) if t = x

Claim # 1: Each φn is continuous

Why? We only need to check that φn is continuous at x. But by
definition of the derivative, we have:

lim
t→x

φn(t) = lim
t→x

fn(t)− fn(x)

t− x
= f ′n(x) = φn(x)X

Claim # 2: φn → φ pointwise, where

φ(t) =

{
f(t)−f(x)

t−x if t 6= x

g(x) if t = x

Why? If t 6= x, then since fn → f pointwise, we get

lim
n→∞

φn(t) = lim
n→∞

fn(t)− fn(x)

t− x
=
f(t)− f(x)

t− x
If t = x, then since f ′n → g, we get

lim
n→∞

φn(x) = lim
n→∞

f ′n(x) = g(x)X

2you have dealt with difference quotients before when you proved the Chain Rule



6 LECTURE 2: UNIFORM CONVERGENCE

Claim # 3: φn → φ uniformly

Once we prove Claim # 3, we’re done with the proof, because φn
continuous and φn → φ uniformly implies φ is continuous, and hence

lim
t→x

f(t)− f(x)

t− x
= lim

t→x
φ(t) = φ(x) = g(x)

Hence f ′(x) exists and equals g(x) X

STEP 2: Proof of Claim # 3 Since it is difficult to deal with φn
directly, let’s use the Cauchy criterion, so consider:

φm(t)− φn(t) =
fm(t)− fm(x)

t− x
− fn(t)− fn(x)

t− x

=
(fm − fn)(t)− (fm − fn)(x)

t− x
= (fm − fn)′ (c)
=f ′m(c)− f ′n(c)

(If t = x, we get the same result)

Where we used the Mean Value Theorem applied to fm − fn, where c
is some number between x and g

Let ε > 0 be given, then since f ′n → g, there is N such that for all
m,n > N we have ‖f ′m − f ′n‖ < ε.

With that N , if m,n > N we get for all t,

|φm(t)− φn(t)| = |f ′m(c)− f ′n(c)| ≤ ε

Therefore φn converges uniformly to some function, which must be φ
(since φn already converges pointwise to φ) �
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4. Series of Functions

The cool thing is that everything we talked about also works series of
functions, provided we consider partial sums:

Definition: The series
∑∞

n=0 fn(x) converges uniformly if the se-
quence of partial sums Fn(x) converges uniformly, where

Fn(x) =
n∑
k=0

fk(x)

(Rudin uses sn, but here I want to emphasize that those are functions)

Example:
∑∞

n=0
xn

n! converges uniformly for all x, and this series we
call ex. See next chapter

Luckily, there is a very important way of checking if a series converges
uniformly. It’s kind of like a comparison test for series

Theorem: [WeierstraßM -test]

Suppose for all x and all n,

|fn(x)| ≤Mn

Where Mn are constants. If
∑
Mn converges, then

∑
fn converges

uniformly (and absolutely, that is
∑
|fn| converges)

So instead of checking that a series of functions converges, you just
need to check that a series of numbers converges.
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Example: Does
∑

1
x2+n2 converge uniformly?

Notice 1
x2+n2 ≤

1
n2 =: Mn and since

∑
Mn =

∑
1
n2 converges, the orig-

inal series converges.

Proof of Weierstraß Let ε > 0 be given. Since
∑
Mn converges, by

the Cauchy criterion for series, there is N such that if n ≥ m > N
then

n∑
k=m

Mk < ε

(Cauchy criterion just means that, after a long time, the tail of the
series is arbitrarily small)

With the same N , for all x, if n ≥ m > N then∣∣∣∣∣
n∑

k=m

fk(x)

∣∣∣∣∣ ≤
n∑

k=m

|fk(x)| ≤
n∑

k=m

Mk < ε

So
∑
fk converges uniformly, again by the Cauchy criterion for series

and because N doesn’t depend on x �

Just to show you again that series can behave weirdly, consider:

Non-Example: Let fn(x) = x2

(1+x2)n and let

f(x) =
∞∑
n=0

fn(x) =
∞∑
n=0

x2

(1 + x2)n

Since fn(0) = 0 we have f(0). But if x 6= 0 we have:
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f(x) = x2
∞∑
n=0

(
1

1 + x2

)n
= x2

(
1

1− 1
1+x2

)
= x2

(
1 + x2

x2

)
= 1 + x2

Therefore the series converges to

f(x) =

{
0 if x = 0

1 + x2 if x 6= 0

So a convergent series of continuous functions might have a discontin-
uous sum.

5. Integration and Differentiation of Series

What makes uniformly convergent series so nice is that they can be
integrated and differentiated term by term. So a lot of “illegal” op-
erations in calculus and physics are actually legitimate for uniformly
convergent series.

Theorem: [Term by Term Integration] If
∑

n fn converges uniformly
and each fn is integrable, then∫ b

a

∞∑
n=0

fn(x)dx =
∞∑
n=0

∫ b

a

fn(x)dx

Proof: Consider the partial sum

n∑
k=0

∫ b

a

fk(x)dx

On the one hand, by definition of a series, as n → ∞, the above
converges to
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∞∑
n=0

∫ b

a

fn(x)dx

On the other hand, since it’s just a finite sum, we have

n∑
k=0

∫ b

a

fk(x)dx =

∫ b

a

n∑
k=0

fk(x)dx =

∫ b

a

Fn(x)dx

By definition of a series, Fn(x) converges uniformly to
∑∞

n=0 fn(x)dx,
so by the integration result from last time, we get∫ b

a

Fn →
∫ b

a

∞∑
n=0

fn(x)

Comparing the two limits, we get our desired result �

Theorem: [Term by Term Differentiation] If
∑

n fn and
∑

n f
′
n con-

verge uniformly, then ( ∞∑
n=0

fn

)′
=

∞∑
n=0

f ′n(x)

The proof is exactly the same as above, but with derivatives.
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