
LECTURE 20: THE LEBESGUE INTEGRAL (I)

1. Measurable Functions

Definition: f is measurable if for all a ∈ R

{f < a} = {x | f(x) < a} is measurable

Property 5: If f and g are measurable, then so is fk for any k and
(if f and g are finite-valued), so are f + g and fg

Proof: (1) If k is odd, notice
{
fk < a

}
=
{
f < a

1
k

}
and similar if even

(2) f + g is measurable because

{f + g < a} =
⋃
r∈Q

{f < r} ∩ {g < a− r}

Finally, for fg use the above and

fg =
1

4

[
(f + g)2 − (f − g)2

]
�

Definition: f = g almost everywhere if f(x) = g(x) for every x
except for a set of measure 0. That is, m {x | f(x) 6= g(x)} = 0

In particular, {f < a} and {g < a} differ by a set of measure 0, so if
one is measurable then the other one is as well. To summarize:
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Property 6: If f is measurable and f(x) = g(x) almost everywhere,
then g is measurable.

All the properties discussed work almost everywhere. For example if
{fn} is measurable and limn→∞ fn(x) = f(x) almost everywhere, then
f is measurable

2. Approximations by Simple Functions

The building block of Lebesgue integration is a simple function:

Definition: The characteristic function of a set E is:

1E(x) =

{
1 if x ∈ E
0 if x /∈ E

(This is also called the indicator function)

Definition: A simple function is a finite sum

f =
N∑
k=1

ak 1Ek

Each Ek is a measurable set of finite measure, and ak are constants

(Compare this with the Riemann sum, where you approximate f with
rectangles, here you approximate f with measurable sets)

What makes the Lebesgue integral work is that you can approximate
measurable functions with simple functions:
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Theorem: If f ≥ 0 then there is an increasing sequence of simple
functions {φk}∞k=1 that converges pointwise to f , that is

φk(x) ≤ φk+1(x) and lim
k→∞

φk(x) = f(x) for all x

Proof:

STEP 1: First, let’s begin with a truncation.

For k ≥ 1, let Qk be the cube centered at 0 and sidelength k1, and let

Fk(x) =


f(x) if x ∈ Qk and f(x) ≤ k

k if x ∈ Qk and f(x) > k

0 otherwise

This says cut off f at k if f becomes too large.

Then for all x, limk→∞ Fk(x) = f(x) and Fk is increasing with k

This Fk kind of does the job, except it’s not a simple function.

STEP 2: Now let’s partition the range [0, k] of Fk.

Let Ek,j =

{
x ∈ Qk |

j

k
< Fk(x) ≤ j + 1

k

}
for 0 ≤ j ≤ k2 − 1

And form the lower sum

φk(x) =
k2−1∑
j=0

(
j

k

)
1Ek,j(x)

1in R that’s just the interval
(
−k2 ,

k
2

)
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Then φk is simple and 0 ≤ Fk(x)− φk(x) ≤ j+1
k −

j
k = 1

k (for some j)

From this it follows that limk→∞ Fk − φk = 0 pointwise and since
Fk → f pointwise, we get φk → f pointwise. Finally, φk is increasing
with k because Fk is (the lower sums just become bigger)

A similar statement is true if f isn’t non-negative any more, provided
you use absolute values:

Theorem: For general measurable f , there is a sequence of simple
functions {φk}∞k=1 such that

|φk(x)| ≤ |φk+1(x)| and lim
k→∞

φk(x) = f(x) for all x

In particular |φk(x)| ≤ |f(x)| for all x and k

Proof: Classical procedure when dealing with functions of mixed sign:

Notice f = f+−f− where f+(x) = max {f(x), 0} and f−(x) = max {−f(x), 0}

Since f± ≥ 0 the previous result gives us two increasing sequences of
non-negative simple functions

{
φ+k
}

and
{
φ−k
}

that converge pointwise
to f±. Then if

φk(x) =: φ+k (x)− φ−k (x)

Then φk(x) converges to f+(x)− f−(x) = f(x) for all x and moreover

|φk(x)| = φ+k (x) + φ−k (x)

Since each φ±k is increasing, it follows that |φk| is increasing �

3. Egorov’s and Lusin’s Theorem
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Finally, let’s state two more facts about functions, one is that “ev-
ery convergent sequence is almost uniformly convergent” (Egorov), the
other is that “every function is almost continuous” (Lusin).

Egorov’s Theorem: If m(E) <∞ and fk : E → R with fk → f a.e.
on E. Then, if ε > 0 is given, there is a closed subset Aε ⊆ E such
that fk → f uniformly on Aε and m(E − Aε) ≤ ε

So fk converges uniformly on f on “almost all” of E. Carefully note
that this is not the same as fk → f almost everywhere!

The proof (see Stein and Shakarchi Theorem 4.4) considers the sets
|fj(x)− f(x)| < 1

n in a clever way, and a result from the homework
about increasing sets

Lusin’s Theorem: If m(E) <∞ and f is finite-valued on E then for
every ε > 0 there is a closed set Fε ⊆ E such that f |Fε is continuous
and m(E − Fε) ≤ ε

The proof (see Stein and Shakarchi Theorem 4.5) uses approximation
of f with step functions (= simple functions whose base are rectangles),
Egorov’s theorem, and the fact that the uniform limit of continuous
functions is continuous

With our knowledge of measurable sets and measurable functions, we
are now ready to tackle the Lebesgue integral. It is defined in stages,
and in each stage we will discover the relevant theorems.

4. Level 1: Simple Functions



6 LECTURE 20: THE LEBESGUE INTEGRAL (I)

Suppose φ is a simple function, that is

φ(x) =
N∑
k=1

ak 1Ek(x)

WLOG, assume that each ak is nonzero and distinct, and each Ek is
disjoint (otherwise just group sets with common value together)

Definition: The Lebesgue Integral of φ =
∑N

k=1 ak 1Ek is∫
Rd
φ(x)dx =

N∑
k=1

akm(Ek)

∫
E

φ(x)dx =

∫
Rd
φ(x)1E(x)dx

In the following, φ and ψ are simple

Immediate Facts:

(1) (Independence of representation) If φ =
∑N

k=1 ak 1Ek is any rep-
resentation of φ, then∫

φ =
N∑
k=1

akm(Ek)

(2) Linearity ∫
aφ+ bψ = a

∫
φ+ b

∫
ψ

(3) Additivity: If E and F are disjoint, then∫
E∪F

φ =

∫
E

φ+

∫
F

φ
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(4) Monotonicity: If φ ≤ ψ then∫
φ ≤

∫
ψ

(5) Triangle Inequality: |φ| is simple and∣∣∣∣∫ φ

∣∣∣∣ ≤ ∫ |φ|
(1) The proof is a bit involved and will be skipped. The idea is to
first assume that the Ek are disjoint but ak not distinct, and then just
group all the Ek corresponding to common value. If the Ek are not dis-
joint, then we can just partition the sets Ek until they become disjoint.

(2) follows from the definition

(3) follows because if E and F are disjoint then 1E∪F = 1E + 1F

(4) enough to show that if η ≥ 0 then
∫
η ≥ 0, which follows since the

coefficients in η are non-negative, and apply this to η = ψ − φ.

(5), notice that we have

|φ| =
N∑
k=1

|ak| 1Ek(x) and so

∣∣∣∣∫ φ

∣∣∣∣ =

∣∣∣∣∣
N∑
k=1

akm(Ek)

∣∣∣∣∣ ≤
N∑
k=1

|ak|m(Ek) =

∫
|φ|

Note: If f = g almost everywhere, then
∫
f =

∫
g



8 LECTURE 20: THE LEBESGUE INTEGRAL (I)

5. Level 2: Bounded Functions with finite

support

Definition: The support of f is

supp(f) = {x | f(x) 6= 0}

(Sometimes it’s defined as the closure of the above, but the distinction
is not important here)

Definition: f is supported on E if f(x) = 0 whenever x /∈ E

In this second level, we’re interested in bounded functions such that
m(supp(f)) <∞

For this, we will need our Approximation Lemma from before that says
there is a sequence of simple functions converging pointwise to f

Definition: ∫
f(x)dx =: lim

k→∞

∫
φk(x)dx

Where {φk} is any sequence of bounded simple functions with the same
support as f such that φk → f pointwise.

This raises two important questions: Does the limit exist? And is it
independent of the limiting sequence φk? The answer is contained in
the following theorem:

Theorem: With {φk} as above, we have

(1) limk→∞
∫
φk exists

(2) If f = 0 a.e. then limk→∞
∫
φk = 0
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Proof: Let E = supp(f). This theorem would be obvious if φk → f
uniformly on E, but luckily we have Egorov’s theorem which says that
this is “almost” true.

More precisely, since m(E) <∞ by Egorov there is a closed subset Aε

of E such that such that φn → f uniformly on Aε and m(E −Aε) < ε.

Hence if In =:
∫
φn we get:

|In − Im| =
∣∣∣∣∫
E

φn − φmdx
∣∣∣∣

≤
∫
E

|φn(x)− φm(x)| dx

=

(∫
Aε

+

∫
E−Aε

)
|φn(x)− φm(x)| dx

For the second integral, since each φn is bounded by M , we get∫
E−Aε

|φn(x)− φm(x)| dx ≤
∫
E−Aε

2Mdx = 2Mm(E − Aε) = 2Mε

For the first integral, since φn converges uniformly on Aε there is N
such that if m,n > N then |φn(x)− φm(x)| < ε for all x and so∫

Aε

|φn(x)− φm(x)| dx ≤ ε

∫
Aε

1dx = εm(Aε) ≤ εm(E)

And therefore, with N as above, if m,n > N we get

|In − Im| ≤ 2Mε+m(E)ε = (2M +m(E))ε

Therefore the sequence {In} is Cauchy in R and hence converges, which
proves (1).
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For (2), if f = 0 you can repeat the argument above to show |In| ≤
m(E)ε+Mε which gives limn→∞ In = 0 �

It follows that integral is independent of the sequence {φk} chosen,
because if φk and ψk are two such sequences converging to f , then
ηk =: φk − ψk is also of the same type and converges to f − f = 0 a.e.
and so by (2) we have

lim
k→∞

∫
ηk = 0⇒ lim

k→∞

∫
φk − ψk = 0⇒ lim

k→∞

∫
φk = lim

k→∞

∫
ψkX
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