
LECTURE 21: LIMITS (II), DERIVATIVES

1. Properties of limits

Just like for continuity, limits enjoy almost identical properties:

Algebra Facts:

Suppose limx→a f(x) = L1 and limx→a g(x) = L2, then:

(1) limx→a f(x) + g(x) = L1 + L2

(2) limx→a f(x)g(x) = L1L2

(3) limx→a
f(x)
g(x) =

L1

L2
(provided L2 ̸= 0)

There is also a “Chen Lu” (Chain Rule) fact for limits:

Chen Lu Fact:

If limx→a f(x) = L and g continuous at L, then

lim
x→a

g(f(x)) = g(L)

Proof: Suppose xn → a, then f(xn) → L because limx→a f(x) = L.
And because g is continuous at L, we get g(f(xn)) → g(L) □
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Note: It’s important that g be continuous at L, otherwise the result
above is wrong:

Non-example 1

Let f(x) = x sin
(
π
x

)
and g be defined as:

g(x) =

{
0 if x ̸= 0

1 if x = 0

Then limx→0 f(x) = 0 (by the squeeze theorem), so the above theorem
would say that limx→0 g(f(x)) = g(0) = 1

But limx→0 g(f(x)) doesn’t even exist: if xn = 2
n → 0, then

f(xn) =
2

n
sin

(
π
2
n

)
=

2

n
sin

(πn
2

)
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Then: f(xn) =

{
0 (if n is even)

± 2
n (If n is odd)

So for even n, we have g(f(xn)) = g(0) = 1 and for odd n, we have
g(f(xn)) = g

(
± 2

n

)
= 0. Hence g(f(xn)) is the sequence (0, 1, 0, 1, 0, 1, · · · )

which doesn’t converge and certainly cannot converge to g(0) = 1

Finally, let’s prove a fact relating one-sided limits and two-sided limits
that’s used throughout calculus:

Two Sided Fact:

lim
x→a

f(x) = L ⇔ lim
x→a−

f(x) = lim
x→a+

f(x) = L

Proof: Here assume L is finite. The proofs for L = ±∞ are similar

(⇒) Let ϵ > 0 be given, then there is δ > 0 such that if 0 < |x− a| < δ
then |f(x)− L| < ϵ
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But, with the same δ > 0, if 0 < x − a < δ, then x − a ≤ |x− a| < δ
so |f(x)− L| < ϵ and so limx→a+ f(x) = L. Similar with x → a−.

(⇐) Let ϵ > 0 be given

Since limx→a+ f(x) = L, there is δ1 > 0 such that if 0 < x − a < δ1
then |f(x)− L| < ϵ

Since limx→a− f(x) = L, there is δ2 > 0 such that if 0 < −(x− a) < δ2
then |f(x)− L| < ϵ

Let δ = min {δ1, δ2}, then if x is such that 0 < |x− a| < δ, then:

Case 1: If x > a, then |x− a| < δ ⇒ x − a < δ < δ1, and so by
definition of δ1, we have |f(x)− L| < ϵ ✓

Case 2: If x < a, then |x− a| < δ ⇒ −(x − a) < δ < δ2 and so by
definition of δ2 we have |f(x)− L| < ϵ ✓

In either case, we get |f(x)− L| < ϵ □

Note: This would have been terribly hard to prove using sequences,
since we wouldn’t be able to control whether xn is > a or < a
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Example 2:

f(x) =
|x− 2|
x− 2

lim
x→2+

f(x) = lim
x→2+

x− 2

x− 2
= lim

x→2+
1 = 1

lim
x→2−

f(x) = lim
x→2−

−(x− 2)

x− 2
= lim

x→2−
−1 = −1

Therefore, by the above fact, limx→2 f(x) doesn’t exist.

2. Derivatives

The concept of limits naturally leads to derivatives:

Definition:

f ′(a) = lim
x→a

f(x)− f(a)

x− a

f ′(x) = lim
h→0

f(x+ h)− f(x)

h



6 LECTURE 21: LIMITS (II), DERIVATIVES

Definition:

We say f is differentiable at a provided that the above limit
exists and is finite

Interpretation: f(x)−f(a)
x−a is the slope of the secant line connecting

(a, f(a)) and (x, f(x)), while f ′(a) is the slope of the tangent line to
f at a. The above limit is saying that the slope of the tangent line is
the limit of slopes of secant lines as x goes to a
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Example 3:

Let f(x) = xn, then:

f ′(a) = lim
x→a

f(x)− f(a)

x− a

= lim
x→a

xn − an

x− a

= lim
x→a

�����(x− a)
(
xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1

)
����x− a

= lim
x→a

xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1

=an−1 + an−2a+ an−3a2 + · · ·+ aan−2 + an−1

= an−1 + an−1 + · · ·+ an−1︸ ︷︷ ︸
n times

=nan−1

Hence f ′(a) = nan−1, that is (xn)′ = nxn−1

Non-Example 4:

Let f(x) = |x|, then f is not differentiable at 0 because

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

|x|
x

But this limit doesn’t exist because the left-hand-side and right-
hand-side limits are not equal (see Example above)

Theorem:

If f is differentiable at a, then f is continuous at a
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Proof: We don’t even need ϵ− δ for this!

All we need to show is that limx→a f(x) = f(a), but:

lim
x→a

f(x) = lim
x→a

f(x)−f(a) + f(a)

= lim
x→a

(
f(x)− f(a)

x− a

)
︸ ︷︷ ︸

→f ′(a)

(x− a)︸ ︷︷ ︸
→0

+f(a)

=f ′(a)× 0 + f(a)

=f(a)✓

Hence limx→a f(x) = f(a) and f is continuous at a □

3. Properties of Derivatives

Just like limits, derivatives enjoy some special rules (or “Lu”s)

Properties:

If f and g are differentiable at a, then so are f + g and cf for any
constant c, and {

(f + g)′ (a) =f ′(a) + g′(a)

(cf)′(a) =cf ′(a)

Proof: Just follows from writing (f + g)′ and (cf)′ as limits

Video: Product Rule Proof

https://youtu.be/2uT1IUS_V_4


LECTURE 21: LIMITS (II), DERIVATIVES 9

Product Rule (Prada Lu)

If f and g are differentiable at a, then so is fg and

(fg)′ (a) = f ′(a)g(a) + f(a)g′(a)

Proof: Similar to what we’ve done so far with products, by adding
and subtracting a term

lim
x→a

(fg)(x)− (fg)(a)

x− a
= lim

x→a

f(x)g(x)− f(a)g(a)

x− a

= lim
x→a

f(x)g(x)−f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= lim
x→a

f(x)g(x)− f(x)g(a)

x− a
+ lim

x→a

f(x)g(a)− f(a)g(a)

x− a

= lim
x→a

f(x)︸︷︷︸
→f(a)

(
g(x)− g(a)

x− a

)
︸ ︷︷ ︸

→g′(a)

+ lim
x→a

(
f(x)− f(a)

x− a

)
︸ ︷︷ ︸

→f ′(a)

g(a)

=f(a)g′(a) + f ′(a)g(a)

=f ′(a)g(a) + f(a)g′(a)

Video: Quotient Rule Proof

Quotient Rule (Koshen Lu)(
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

(g(x))2

Proof: You could do it by writing the derivative as a limit (like in the
video above), but here we’ll do something even cooler! Let’s use the

https://youtu.be/xCcXgAdud5I
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product rule to prove the quotient rule:

Let h(x) = f(x)
g(x) , then f(x) = h(x)g(x), now differentiating both sides,

we get:

f ′(x) = (h(x)g(x))
′

f ′(x) =h′(x)g(x) + h(x)g′(x)

h′(x)g(x) =f ′(x)− h(x)g′(x)

h′(x) =
f ′(x)− h(x)g′(x)

g(x)

(
f

g

)′
(x) =

f ′(x)−
(
f(x)
g(x)

)
g′(x)

g(x)

=

f ′(x)g(x)−f(x)g′(x)
g(x)

g(x)

=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
✓

Example 5:

Let f(x) = x−n = 1
xn , then using the quotient rule you can get

(x−n)′ = −nx−(n+1)

4. Use the Chen Lu!

Video: Proof of the Chen Lu

Last but not least, the most powerful Lu of them all:

https://youtu.be/BicyN84QYbQ
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Chain Rule (Chen Lu)

If f is differentiable at x and g is differentiable at f(x), then g ◦f
is differentiable at x and

(g ◦ f)′(x) = g′(f(x))f ′(x)

Example 6:((
x4 + 13x

)7)′
= 7

(
x4 + 13x

)6 (
4x3 + 13

)
Wrong Proof: I will first give a wrong proof, and then we’ll see how
to adapt this to get the correct proof:

(g ◦ f)′ (x) = (g(f(x)))′

= lim
h→0

g(f(x+ h))− g(f(x))

h

= lim
h→0

(
g(f(x+ h))− g(f(x))

f(x+ h)− f(x)

)(
f(x+ h)− f(x)

h

)
=g′(f(x)) (f ′(x)) □

What went wrong here? The proof is correct except we could have
f(x + h) − f(x) = 0 for small h, in which case we would be dividing
by 0, which is a big no-no

It turns out not all is lost, because we do have the following observation:

Important Observation: Since limh→0
g(x+h)−g(x)

h = g′(x), we have
g(x+h)−g(x)

h ≈ g′(x) for h close to 0, and more formally we write this as:
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Fact:

g(x+ h)− g(x)

h
= g′(x) +O(h)

Where O(h) is a function with the property that O(h) → 0 as h → 0

In fact, solving this, we get O(h) = g(x+h)−g(x)
h − g′(x), which goes to 0

as h → 0, by definition of g′(x)

Note: This is sometimes called a first-order or linear approximation,
since this implies that g(x+ h) = g(x) + hg′(x) + hO(h) (like a Taylor
series)

Example 7:

If g(x) = x3, then:

g(x+ h)− g(x)

h
=
(x+ h)3 − x3

h

=
x3 + 3x2h+ 3xh2 + h3 − x3

h

=
3x2h+ 3xh2 + h3

h
= 3x2︸︷︷︸

g′(x)

+3xh+ h2

=g′(x) +O(h)

Where O(h) = 3xh+ h2 → 0 as h → 0


	1. Properties of limits
	2. Derivatives
	3. Properties of Derivatives
	4. Use the Chen Lu!

