LECTURE 21: LIMITS (II), DERIVATIVES

1. Properties of Limits

Just like for continuity, limits enjoy almost identical properties:

Algebra Facts:

Suppose $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} g(x)=L_{2}$, then:
(1) $\lim _{x \rightarrow a} f(x)+g(x)=L_{1}+L_{2}$
(2) $\lim _{x \rightarrow a} f(x) g(x)=L_{1} L_{2}$
(3) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L_{1}}{L_{2}}\left(\right.$ provided $\left.L_{2} \neq 0\right)$

There is also a "Chen Lu" (Chain Rule) fact for limits:

Chen Lu Fact:

If $\lim _{x \rightarrow a} f(x)=L$ and g continuous at L, then

$$
\lim _{x \rightarrow a} g(f(x))=g(L)
$$

Proof: Suppose $x_{n} \rightarrow a$, then $f\left(x_{n}\right) \rightarrow L$ because $\lim _{x \rightarrow a} f(x)=L$. And because g is continuous at L, we get $g\left(f\left(x_{n}\right)\right) \rightarrow g(L)$

Note: It's important that g be continuous at L, otherwise the result above is wrong:

Non-example 1

Let $f(x)=x \sin \left(\frac{\pi}{x}\right)$ and g be defined as:

$$
g(x)= \begin{cases}0 & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Then $\lim _{x \rightarrow 0} f(x)=0$ (by the squeeze theorem), so the above theorem would say that $\lim _{x \rightarrow 0} g(f(x))=g(0)=1$

But $\lim _{x \rightarrow 0} g(f(x))$ doesn't even exist: if $x_{n}=\frac{2}{n} \rightarrow 0$, then

$$
f\left(x_{n}\right)=\frac{2}{n} \sin \left(\frac{\pi}{\frac{2}{n}}\right)=\frac{2}{n} \sin \left(\frac{\pi n}{2}\right)
$$

$$
\text { Then: } f\left(x_{n}\right)= \begin{cases}0 & (\text { if } n \text { is even }) \\ \pm \frac{2}{n} & (\text { If } n \text { is odd })\end{cases}
$$

So for even n, we have $g\left(f\left(x_{n}\right)\right)=g(0)=1$ and for odd n, we have $g\left(f\left(x_{n}\right)\right)=g\left(\pm \frac{2}{n}\right)=0$. Hence $g\left(f\left(x_{n}\right)\right)$ is the sequence ($0,1,0,1,0,1, \cdots$) which doesn't converge and certainly cannot converge to $g(0)=1$

Finally, let's prove a fact relating one-sided limits and two-sided limits that's used throughout calculus:

Two Sided Fact:

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Proof: Here assume L is finite. The proofs for $L= \pm \infty$ are similar (\Rightarrow) Let $\epsilon>0$ be given, then there is $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$

But, with the same $\delta>0$, if $0<x-a<\delta$, then $x-a \leq|x-a|<\delta$ so $|f(x)-L|<\epsilon$ and so $\lim _{x \rightarrow a^{+}} f(x)=L$. Similar with $x \rightarrow a^{-}$. (\Leftarrow) Let $\epsilon>0$ be given

Since $\lim _{x \rightarrow a^{+}} f(x)=L$, there is $\delta_{1}>0$ such that if $0<x-a<\delta_{1}$ then $|f(x)-L|<\epsilon$

Since $\lim _{x \rightarrow a^{-}} f(x)=L$, there is $\delta_{2}>0$ such that if $0<-(x-a)<\delta_{2}$ then $|f(x)-L|<\epsilon$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then if x is such that $0<|x-a|<\delta$, then:
Case 1: If $x>a$, then $|x-a|<\delta \Rightarrow x-a<\delta<\delta_{1}$, and so by definition of δ_{1}, we have $|f(x)-L|<\epsilon \checkmark$

Case 2: If $x<a$, then $|x-a|<\delta \Rightarrow-(x-a)<\delta<\delta_{2}$ and so by definition of δ_{2} we have $|f(x)-L|<\epsilon \checkmark$

In either case, we get $|f(x)-L|<\epsilon$
Note: This would have been terribly hard to prove using sequences, since we wouldn't be able to control whether x_{n} is $>a$ or $<a$

Example 2:

$$
\begin{gathered}
f(x)=\frac{|x-2|}{x-2} \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=\lim _{x \rightarrow 2^{+}} 1=1
\end{gathered}
$$

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=\lim _{x \rightarrow 2^{-}}-1=-1
$$

Therefore, by the above fact, $\lim _{x \rightarrow 2} f(x)$ doesn't exist.

2. Derivatives

The concept of limits naturally leads to derivatives:

Definition:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

Definition:

We say f is differentiable at a provided that the above limit exists and is finite

Interpretation: $\frac{f(x)-f(a)}{x-a}$ is the slope of the secant line connecting $(a, f(a))$ and $(x, f(x))$, while $f^{\prime}(a)$ is the slope of the tangent line to f at a. The above limit is saying that the slope of the tangent line is the limit of slopes of secant lines as x goes to a

Example 3:

Let $f(x)=x^{n}$, then:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)}{x-a} \\
& =\lim _{x \rightarrow a} x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1} \\
& =a^{n-1}+a^{n-2} a+a^{n-3} a^{2}+\cdots+a a^{n-2}+a^{n-1} \\
& =\underbrace{a^{n-1}+a^{n-1}+\cdots+a^{n-1}}_{n \text { times }} \\
& =n a^{n-1}
\end{aligned}
$$

Hence $f^{\prime}(a)=n a^{n-1}$, that is $\left(x^{n}\right)^{\prime}=n x^{n-1}$

Non-Example 4:

Let $f(x)=|x|$, then f is not differentiable at 0 because

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

But this limit doesn't exist because the left-hand-side and right-hand-side limits are not equal (see Example above)

Theorem:

If f is differentiable at a, then f is continuous at a

Proof: We don't even need $\epsilon-\delta$ for this!
All we need to show is that $\lim _{x \rightarrow a} f(x)=f(a)$, but:

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a} f(x)-f(a)+f(a) \\
& =\lim _{x \rightarrow a} \underbrace{\left.\frac{f(x)-f(a)}{x-a}\right)}_{\rightarrow f^{\prime}(a)} \underbrace{(x-a)}_{\rightarrow 0}+f(a) \\
& =f^{\prime}(a) \times 0+f(a) \\
& =f(a) \checkmark
\end{aligned}
$$

Hence $\lim _{x \rightarrow a} f(x)=f(a)$ and f is continuous at a

3. Properties of Derivatives

Just like limits, derivatives enjoy some special rules (or "Lu"s)

Properties:

If f and g are differentiable at a, then so are $f+g$ and $c f$ for any constant c, and

$$
\left\{\begin{aligned}
(f+g)^{\prime}(a) & =f^{\prime}(a)+g^{\prime}(a) \\
(c f)^{\prime}(a) & =c f^{\prime}(a)
\end{aligned}\right.
$$

Proof: Just follows from writing $(f+g)^{\prime}$ and $(c f)^{\prime}$ as limits
Video: Product Rule Proof

Product Rule (Prada Lu)

If f and g are differentiable at a, then so is $f g$ and

$$
(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
$$

Proof: Similar to what we've done so far with products, by adding and subtracting a term

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{(f g)(x)-(f g)(a)}{x-a} & =\lim _{x \rightarrow a} \frac{f(x) g(x)-f(a) g(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{f(x) g(x)-f(x) g(a)+f(x) g(a)-f(a) g(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{f(x) g(x)-f(x) g(a)}{x-a}+\lim _{x \rightarrow a} \frac{f(x) g(a)-f(a) g(a)}{x-a} \\
& =\lim _{x \rightarrow a} \underbrace{f(x)}_{\rightarrow f(a)} \underbrace{\left(\frac{g(x)-g(a)}{x-a}\right)}_{\rightarrow g^{\prime}(a)}+\lim _{x \rightarrow a} \underbrace{\left(\frac{f(x)-f(a)}{x-a}\right)}_{\rightarrow f^{\prime}(a)} g(a) \\
& =f(a) g^{\prime}(a)+f^{\prime}(a) g(a) \\
& =f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
\end{aligned}
$$

Video: Quotient Rule Proof

Quotient Rule (Koshen Lu)

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Proof: You could do it by writing the derivative as a limit (like in the video above), but here we'll do something even cooler! Let's use the
product rule to prove the quotient rule:
Let $h(x)=\frac{f(x)}{g(x)}$, then $f(x)=h(x) g(x)$, now differentiating both sides, we get:

$$
\begin{aligned}
f^{\prime}(x) & =(h(x) g(x))^{\prime} \\
f^{\prime}(x) & =h^{\prime}(x) g(x)+h(x) g^{\prime}(x) \\
h^{\prime}(x) g(x) & =f^{\prime}(x)-h(x) g^{\prime}(x) \\
h^{\prime}(x) & =\frac{f^{\prime}(x)-h(x) g^{\prime}(x)}{g(x)} \\
\left(\frac{f}{g}\right)^{\prime}(x) & =\frac{f^{\prime}(x)-\left(\frac{f(x)}{g(x)}\right) g^{\prime}(x)}{g(x)} \\
& =\frac{\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)}}{g(x)} \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \checkmark
\end{aligned}
$$

Example 5:

Let $f(x)=x^{-n}=\frac{1}{x^{n}}$, then using the quotient rule you can get $\left(x^{-n}\right)^{\prime}=-n x^{-(n+1)}$

4. Use the Chen Lu!

Video: Proof of the Chen Lu

Last but not least, the most powerful Lu of them all:

Chain Rule (Chen Lu)

If f is differentiable at x and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x and

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

Example 6:

$$
\left(\left(x^{4}+13 x\right)^{7}\right)^{\prime}=7\left(x^{4}+13 x\right)^{6}\left(4 x^{3}+13\right)
$$

Wrong Proof: I will first give a wrong proof, and then we'll see how to adapt this to get the correct proof:

$$
\begin{aligned}
(g \circ f)^{\prime}(x) & =(g(f(x)))^{\prime} \\
& =\lim _{h \rightarrow 0} \frac{g(f(x+h))-g(f(x))}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{g(f(x+h))-g(f(x))}{f(x+h)-f(x)}\right)\left(\frac{f(x+h)-f(x)}{h}\right) \\
& =g^{\prime}(f(x))\left(f^{\prime}(x)\right) \quad \square
\end{aligned}
$$

What went wrong here? The proof is correct except we could have $f(x+h)-f(x)=0$ for small h, in which case we would be dividing by 0 , which is a big no-no

It turns out not all is lost, because we do have the following observation:
Important Observation: Since $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x)$, we have $\frac{g(x+h)-g(x)}{h} \approx g^{\prime}(x)$ for h close to 0 , and more formally we write this as:

Fact:

$$
\frac{g(x+h)-g(x)}{h}=g^{\prime}(x)+O(h)
$$

Where $O(h)$ is a function with the property that $O(h) \rightarrow 0$ as $h \rightarrow 0$
In fact, solving this, we get $O(h)=\frac{g(x+h)-g(x)}{h}-g^{\prime}(x)$, which goes to 0 as $h \rightarrow 0$, by definition of $g^{\prime}(x)$

Note: This is sometimes called a first-order or linear approximation, since this implies that $g(x+h)=g(x)+h g^{\prime}(x)+h O(h)$ (like a Taylor series)

Example 7:

If $g(x)=x^{3}$, then:

$$
\begin{aligned}
\frac{g(x+h)-g(x)}{h} & =\frac{(x+h)^{3}-x^{3}}{h} \\
& =\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\underbrace{3 x^{2}}_{g^{\prime}(x)}+3 x h+h^{2} \\
& =g^{\prime}(x)+O(h)
\end{aligned}
$$

Where $O(h)=3 x h+h^{2} \rightarrow 0$ as $h \rightarrow 0$

