LECTURE 21: LIMITS (II), DERIVATIVES

1. PROPERTIES OF LIMITS

Just like for continuity, limits enjoy almost identical properties:

Algebra Facts:

Suppose lim, ., f(x) = Ly and lim,_,, g(x) = Lo, then:

(1) lim,—q f(z) + g(x) = L1 + Ly
(2) lim,_,, f(x)g(x) = LiLs

(3) limyq L8 = £ (provided Ly # 0)

There is also a “Chen Lu” (Chain Rule) fact for limits:

If lim, ., f(x) = L and g continuous at L, then

lim g(f(z)) = g(L)

Tr—a

Proof: Suppose x, — a, then f(z,) — L because lim, ., f(z) = L.
And because g is continuous at L, we get g(f(z,)) — g(L) O
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Note: It’s important that g be continuous at L, otherwise the result
above is wrong:

Non-example 1

Let f(z) = zsin (Z) and g be defined as:

@ [0 a0
K=V ifz=0

f(x)
Then lim,_,o f(x) = 0 (by the squeeze theorem), so the above theorem
would say that lim, .o g(f(z)) = ¢(0) =1

But lim, o g(f(z)) doesn’t even exist: if z, = 2 — 0, then

@) = 2 sin (Z> ~ Zgin (%)

n 2 n
n
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0 (if n is even)

Then: f(z,) = {:I:% (If n is odd)

So for even n, we have g(f(z,)) = g(0) = 1 and for odd n, we have
9(f(z,)) = g (£2) = 0. Hence g(f(z,)) is the sequence (0,1,0,1,0,1,--+)
which doesn’t converge and certainly cannot converge to ¢g(0) = 1

Finally, let’s prove a fact relating one-sided limits and two-sided limits
that’s used throughout calculus:

Two Sided Fact:
lim f(z) = L < lim f(z) = lim f(z) =1L

T—a T—a rz—at

Proof: Here assume L is finite. The proofs for L = +oc0 are similar

(=) Let € > 0 be given, then there is 6 > 0 such that if 0 < |[x —a| < ¢
then |f(z) — L| < e
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But, with the same 6 > 0,if 0 <2z —a < J,thenx —a < |z —a| <
so |f(z) — L| < € and so lim,_,,+ f(z) = L. Similar with z — a™.

(<) Let € > 0 be given

Since lim, ..+ f(x) = L, there is 6; > 0 such that if 0 < 2z —a < &
then |f(z) — L| < e

Since lim, .- f(z) = L, there is §o > 0 such that if 0 < —(z —a) < Jy
then |f(x) — L| <€

Let 6 = min {61, d2}, then if x is such that 0 < |x — a| < 4, then:

Case 1: If x > a, then |[r —a] < § = . —a < § < 1, and so by
definition of d;, we have |f(z) — L| < e v

Case 2: If v < a, then |[xr —a| < d = —(x —a) < d < Jy and so by
definition of & we have |f(z) — L| < e v

In either case, we get |f(x) — L| <€ O

Note: This would have been terribly hard to prove using sequences,
since we wouldn’t be able to control whether z,, is > a or < a
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Example 2:

|z =2
flo) =222
: . T —2 .
lim f(z)= lim = lim1=1
r—2+1 =2t x — 2 r—2+
(z—2
lim f(z) = lim —* =2 _ Jim —1= -1
T—2~ =2 T — 2 T—2~
Therefore, by the above fact, lim, s f(x) doesn’t exist.

O 1

1 O f(x)
2

2. DERIVATIVES

The concept of limits naturally leads to derivatives:

f’(a) :}Ci{)fcll f(%; : Z:(a)
Fo) i LT D) = @)

h—0 h
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We say f is differentiable at a provided that the above limit

exists and is finite
(x, f(x))

f'(a)

a - X

Interpretation: L (2:@(“) is the slope of the secant line connecting

(a, f(a)) and (z, f(x)), while f’(a) is the slope of the tangent line to
f at a. The above limit is saying that the slope of the tangent line is
the limit of slopes of secant lines as x goes to a

~~
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Let f(z) = 2", then:

f/(a> :Clvl_rg}l f(xsz‘ : i(a)
= lim v

r—a T — Qa

(z—a) (m”_l + 2" 20+ 2" 30+ +xa" 2+ a”_l)

= lim
r—a €r—a

— lim xn—l i xn—2a T ZUn_SCL2 N x&n—2 i an—l
r—a

:an—l+an—2a+an—3a2_’_.“+aan—2+an—1

:gn—l +an—1 4. _{_an—i
n times

:nan—l

Hence f'(a) = na™ !, that is (") = na" !

Non-Example 4:

Let f(z) = |z|, then f is not differentiable at 0 because
]

i F& 1O _ 1l

z—=0 1 —0 =0 I
But this limit doesn’t exist because the left-hand-side and right-
hand-side limits are not equal (see Example above)

Theorem:

If f is differentiable at a, then f is continuous at a
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Proof: We don’t even need € — ¢ for this!

All we need to show is that lim,_,, f(x) = f(a), but:

lim f(z) = lim f(z)—f(a) + f(a)

= lim <—f($) — f(a)) (x —a)+f(a)
.’13—>Cl\ Tr — a /\T
1)
=f'(a) x 0+ f(a)
=f(a)v
Hence lim,_,, f(z) = f(a) and f is continuous at a O

3. PROPERTIES OF DERIVATIVES

Just like limits, derivatives enjoy some special rules (or “Lu”s)

If f and g are differentiable at a, then so are f + g and cf for any
constant ¢, and

(f +9)' (@) =f'(a) + g'(a)
(cf)(a) =cf'(a)

Proof: Just follows from writing (f + ¢)’ and (cf)" as limits

Video: Product Rule Proof ]



https://youtu.be/2uT1IUS_V_4
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Product Rule (Prada Lu)

If f and g are differentiable at a, then so is f¢g and

(f9) (a) = f'(a)g(a) + f(a)g'(a)

Proof: Similar to what we’ve done so far with products, by adding
and subtracting a term

(fg)(z) — (fg)(a)

lim = lim
i L ®)9(@) = f(2)g(a) + f(2)g(a) = f(a)g(a)
iy L @)9(2) - f(2)gla) . f(@)g(a) = f(a)g(a)

T—0 N~ Tr— a r—a T — aQ
_>f(a)\ ~~ _J/ A ~~ _J/
—g'(a) —f'(a)
=f(a)g'(a) + f'(a)g(a)
=f'(a)g(a) + f(a)g'(a)

Video: Quotient Rule Proof

Quotient Rule (Koshen Lu)

<f)' (2) f'(x)g(x) — f(x)g'()

g

Proof: You could do it by writing the derivative as a limit (like in the
video above), but here we’ll do something even cooler! Let’s use the


https://youtu.be/xCcXgAdud5I
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product rule to prove the quotient rule:

Let h(z) = %, then f(x) = h(x)g(x), now differentiating both sides,
we get:

Let f(x) = 27" = xin, then using the quotient rule you can get
—(n+1)

(z7™) = —nzx

4. USE THE CHEN Lu!

Video: Proof of the Chen Lu

Last but not least, the most powerful Lu of them all:


https://youtu.be/BicyN84QYbQ
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Chain Rule (Chen Lu)

If f is differentiable at x and g is differentiable at f(z), then go f
is differentiable at x and

(9o f)(z) =g (f(x)f (x)

((:c4 + 1333)7)/ — 7 (¢* + 132)° (42® + 13)

Wrong Proof: I will first give a wrong proof, and then we’ll see how
to adapt this to get the correct proof:

(90 ) () = (9 /(@)
gl ) — o))
h—0 h
(e 1) — g(F@) (fa+h) — f(@)
i (Vi) ()
(@) (Fa) O

What went wrong here? The proof is correct except we could have
f(x 4+ h) — f(z) = 0 for small h, in which case we would be dividing
by 0, which is a big no-no

It turns out not all is lost, because we do have the following observation:

Important Observation: Since limhéow = ¢'(x), we have

w ~ ¢'(x) for h close to 0, and more formally we write this as:
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gz +h) —g(z)

= /(z) + O(h)

Where O(h) is a function with the property that O(h) — 0 as h — 0
In fact, solving this, we get O(h) = w — ¢'(x), which goes to 0
as h — 0, by definition of ¢'(z)

Note: This is sometimes called a first-order or linear approximation,
since this implies that g(z + h) = g(z) + hg'(z) + hO(h) (like a Taylor
series)

If g(x) = 23, then:

glx+h)—glx) (z+ h)3 — 23

h h
_CC3 + 32%h + 3xh? + h3 — 23
N h
_3332h + 3xh® 4+ A3
a h
= 322 +3zh + h?
g'(z)

=g'(z) + O(h)
Where O(h) = 3xh +h®> = 0as h — 0
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