LECTURE 21: THE LEBESGUE INTEGRAL (II)

1. RECAP: LEVEL 1 AND 2

LEVEL 1: $(f$ simple $)$ The Lebesgue Integral of $\phi=\sum_{k=1}^{N} a_{k} 1_{E_{k}}$ is

$$
\int_{\mathbb{R}^{d}} \phi(x) d x=\sum_{k=1}^{N} a_{k} m\left(E_{k}\right)
$$

LEVEL 2: (f bounded and finite support)

$$
\int f(x) d x=\lim _{k \rightarrow \infty} \int \phi_{k}(x) d x
$$

Where $\left\{\phi_{k}\right\}$ is any sequence of bounded simple functions (with same support as f) such that $\phi_{k} \rightarrow f$ pointwise

Last time, we've seen that this limit indeed exists and is independent of the sequence ϕ_{k} used.

Moreover, you can check that the same properties (linearity, monotonicity, triangle inequality) still hold.

2. Bounded Convergence Theorem

Question: If $f_{n} \rightarrow f$ pointwise, do we have $\int f_{n} \rightarrow \int f$?

In general, the answer is NO:

Non-Example:

$$
\text { Let } f_{n}(x)= \begin{cases}n & \text { if } 0<x<\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then $f_{n} \rightarrow 0$ pointwise but $\int f_{n}=1$ for all n so $\int f_{n} \nrightarrow \int 0$
The Bounded Convergence Theorem says YES if all the f_{n} are bounded:
Bounded Convergence Theorem: If $\left\{f_{n}\right\}$ is a sequence of functions bounded by M (and supported on E with $m(E)<\infty$) and $f_{n} \rightarrow f$ a.e., then

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|=0
$$

Note: In particular implies that $\lim _{n \rightarrow \infty} \int f_{n}=\int f$
Proof: Similar to the proof given last time.
Let $\epsilon>0$ be given, then since $m(E)<\infty$, by Egorov, there is $A_{\epsilon} \subseteq E$ with $f_{n} \rightarrow f$ uniformly on A_{ϵ} and $m\left(E-A_{\epsilon}\right)<\epsilon$.

By uniform conv, there is N such that if $n>N$ then $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in A_{\epsilon}$, but then

$$
\begin{aligned}
\int_{E}\left|f-f_{n}\right| d x & =\left(\int_{A_{\epsilon}}+\int_{E-A_{\epsilon}}\right)\left|f_{n}-f\right| \\
& =\int_{A_{\epsilon}} \underbrace{\left|f_{n}(x)-f(x)\right|}_{<\epsilon} d x+\int_{E-A_{\epsilon}} \underbrace{\left|f_{n}(x)-f(x)\right|}_{\leq 2 M} d x \\
& \leq m\left(A_{\epsilon}\right) \epsilon+2 M m\left(E-A_{\epsilon}\right)
\end{aligned}
$$

$$
\leq m(E) \epsilon+2 M \epsilon=\epsilon(m(E)+2 M)
$$

This is the first of 3 convergence theorems that we'll see in this course.

3. Riemann vs. Lebesgue Integral

As an interlude, let's compare the Riemann and Lebesgue integrals and show that the Lebesgue one is strictly better:

Definition ϕ is a step function if

$$
\phi(x)=\sum_{k=1}^{N} a_{k} 1_{R_{k}} \quad R_{k} \text { rectangle }
$$

(It's simple function but the base is a rectangle)
Theorem: If f is Riemann integrable on $[a, b]$, then f is measurable

$$
\text { and } \int_{[a, b]}^{\mathcal{R}} f(x) d x=\int_{[a, b]}^{\mathcal{L}} f(x) d x
$$

Proof:

STEP 1: By definition, a Riemann integrable function is bounded, say $|f(x)| \leq M$

Riemann integration says there is a sequence $\left\{\phi_{k}\right\}$ (lower function) and $\left\{\psi_{k}\right\}$ (upper function) of step functions bounded by M such that

$$
\begin{gathered}
\phi_{1}(x) \leq \phi_{2}(x) \leq \cdots \leq f \leq \cdots \leq \psi_{2}(x) \leq \psi_{1}(x) \\
\lim _{k \rightarrow \infty} \int_{[a, b]}^{\mathcal{R}} \phi_{k}(x) d x=\lim _{k \rightarrow \infty} \int_{[a, b]}^{\mathcal{R}} \psi_{k}(x) d x=: \int_{[a, b]}^{\mathcal{R}} f(x) d x
\end{gathered}
$$

Upshot: Since step functions are simple functions, by LEVEL 1 of the Lebesgue integral, we have

$$
\int_{[a, b]}^{\mathcal{R}} \phi_{k}(x) d x=\int_{[a, b]}^{\mathcal{L}} \phi_{k}(x) d x \text { and same for } \psi_{k}
$$

STEP 2: Notice that $\phi_{k} \rightarrow \widetilde{\phi}$ for some $\widetilde{\phi}$ (since ϕ_{k} increases) and $\psi_{k} \rightarrow \widetilde{\psi}$ for some $\widetilde{\psi}$ (since ψ_{k} decreases). Hence, since ϕ_{k} and ψ_{k} are bounded, by the BCT, we get

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \int_{[a, b]}^{\mathcal{L}} \phi_{k}(x) d x=\int_{[a, b]}^{\mathcal{L}} \widetilde{\phi}(x) d x \text { and same for } \psi_{k} \\
\text { Hence } \int_{[a, b]}^{\mathcal{L}} \widetilde{\phi}(x) d x=\lim _{k \rightarrow \infty} \int_{[a, b]}^{\mathcal{L}} \phi_{k}(x) d x=\lim _{k \rightarrow \infty} \int_{[a, b]}^{\mathcal{R}} \phi_{k}(x) d x=: \int_{[a, b]}^{\mathcal{R}} f(x) d x \\
\text { Therefore } \int_{[a, b]}^{\mathcal{L}} \widetilde{\psi}-\widetilde{\phi}=\left(\int_{[a, b]}^{\mathcal{R}} f\right)-\left(\int_{[a, b]}^{\mathcal{R}} f\right)=0
\end{gathered}
$$

But since $\psi_{k} \simeq \phi_{k} \geq 0$, we get $\widetilde{\psi}-\widetilde{\phi} \geq 0$ and so the integral being zero implies that $\widetilde{\psi}=\widetilde{\phi}$ a.e. (see homework), but since $\phi_{k} \leq f \leq \psi_{k}$ we get $\widetilde{\phi} \leq f \leq \widetilde{\psi}$ and so $\widetilde{\psi}=\widetilde{\phi}=f$ a.e.

Since $\widetilde{\phi}$ is measurable, being a limit of (measurable) step functions, it follows that f is measurable \checkmark

STEP 3: Finally, since $\phi_{k} \rightarrow f$, once again by the BCT we have

$$
\int_{[a, b]}^{\mathcal{L}} f(x) d x \stackrel{\mathrm{BCT}}{=} \lim _{k \rightarrow \infty} \int_{[a, b]}^{\mathcal{L}} \phi_{k}(x) d x=\int_{[a, b]}^{\mathcal{R}} f(x) d x
$$

Non-Example: Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } x \text { if rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is not Riemann integrable on $[0,1]$ since the upper-sums are always 1 and the lower sums are always 0 .

However, notice $f(x)=1_{E}$ where $E=[0,1] \backslash \mathbb{Q}$ and so

$$
\int f=m(E)=m([0,1])-m(\mathbb{Q} \cap[0,1])=1-0=1
$$

So the Lebesgue integral is strictly better than the Riemann integral. 4. Level 3: Non-Negative Functions

In general, if $f \geq 0$ is measurable (could be $\pm \infty$), then we define the Lebesgue integral simply as:

Definition:

$$
\int f(x) d x=\sup _{g} \int g(x) d x
$$

Where the sup is taken over all g from LEVEL 2 with $0 \leq g \leq f$, that is g is bounded and supported on a set of finite measure.

Definition: f is integrable if $\int|f(x)| d x<\infty$
(We can remove the absolute value here since f is non-negative)

Example:

$$
f_{a}(x)=\left\{\begin{array}{ll}
\frac{1}{|x|^{a}} & \text { if }|x| \leq 1 \\
0 & \text { if }|x|>1
\end{array} \quad \text { and } \quad g_{a}(x)= \begin{cases}0 & \text { if }|x| \leq 1 \\
\frac{1}{|x|^{a}} & \text { if }|x|>1\end{cases}\right.
$$

f_{a} is integrable when $a<d$ and g_{a} is integrable when $a>d$ (see HW)
Once again, the same properties (linearity, additivity, monotonicity) hold. The only non-obvious part is the following part of linearity:

$$
\text { Fact: } \int f+g=\int f+\int g
$$

Proof: \geq Suppose $\phi \leq f$ and $\psi \leq g$ where ϕ and ψ are bounded and supported on a set of finite measure, then so is $\phi+\psi$ and $\phi+\psi \leq f+g$ and therefore by definition of $\int f+g$ we have

$$
\int f+g \geq \int \phi+\psi \stackrel{\text { LEVEL } 2}{=} \int \phi+\int \psi
$$

Taking the sup over $\phi \leq f$, we get

$$
\int f+g \geq\left(\int f\right)+\int \psi
$$

And taking the sup over $\psi \leq g$ we get

$$
\int f+g \geq \int f+\int g \checkmark
$$

\leq Suppose η is bounded and supported on a set of finite measure with $\eta \leq f+g$. Let $\eta_{1}(x)=: \min (f(x), \eta(x))$ and $\eta_{2}=: \eta-\eta_{1}$ (bounded and supported on sets of finite measure), and note that $\eta_{1} \leq f$ and $\eta_{2} \leq g$

$$
\int \eta \stackrel{\text { LEVEL } 2}{=} \int \eta_{1}+\eta_{2}=\int \eta_{1}+\int \eta_{2} \stackrel{\text { DEF }}{\leq} \int f+\int g
$$

Taking the sup over $\eta \leq f+g$ gives the desired inequality.
Fact: If f is integrable and $0 \leq g \leq f$ then g is integrable

Follows because $\int|g| \leq \int|f|<\infty$
Fact: If f is integrable then $f(x)<\infty$ for almost every x
Proof: Let $E_{k}=\{x \mid f(x) \geq k\}$ and $E_{\infty}=\{x \mid f(x)=\infty\}$ then

$$
\int_{\mathbb{R}^{d}} f \geq \int_{E_{k}} f \geq \int_{E_{k}} k=k m\left(E_{k}\right)
$$

Hence $m\left(E_{k}\right) \leq \frac{1}{k}\left(\int f\right) \rightarrow 0$, hence $\lim _{k \rightarrow \infty} m\left(E_{k}\right)=0$ but since $E_{k} \searrow E_{\infty}$ and $m\left(E_{k}\right)<\infty$, we get $m\left(E_{\infty}\right)=0$ (from homework)

5. Fatou's Lemma

Recall: If $f_{n} \rightarrow f$ then $\int f_{n} \nrightarrow \int f$. But what is true is that $\int f$ is always smaller:

Fatou's Lemma If $f_{n} \geq 0$ and $f_{n} \rightarrow f$ pointwise a.e. then

$$
\int f \leq \liminf _{n \rightarrow \infty} \int f_{n}
$$

So $\int f$ is always smaller than the smallest possible limit of $\int f_{n}$
Application: This is INCREDIBLY useful in the calculus of variations and PDE, which deals with minimizing integrals. Usually, the best you can do is to find sequence f_{n} of minimizers that converges to some f. Fatou says that $\int f$ is even smaller than all the $\int f_{n}$ (in the liminf sense), and so f is usually the minimizer you're looking for!

Proof: We want to use the LEVEL 3 definition of the integral: Suppose $0 \leq g \leq f$ where g is bounded and supported on some E with
$m(E)<\infty$.
Let $g_{n}(x)=: \min \left(g(x), f_{n}(x)\right)$ then $g_{n} \rightarrow g$ a.e. so by the BCT we have

$$
\int g_{n} \rightarrow \int g
$$

By construction $g_{n} \leq f_{n}$ and so $\int g_{n} \leq \int f_{n}$ and so taking liminf on both sides we get $\liminf _{n \rightarrow \infty} \int g_{n} \leq \liminf _{n \rightarrow \infty} \int f_{n}$ and so

$$
\begin{gathered}
\int g=\lim _{n \rightarrow \infty} \int g_{n}=\liminf _{n \rightarrow \infty} \int g_{n} \leq \liminf _{n \rightarrow \infty} \int f_{n} \\
\int g \leq \liminf _{n \rightarrow \infty} \int f_{n}
\end{gathered}
$$

Finally, taking the sup over g yields the result

6. The Monotone Convergence Theorem

We are now ready to prove our second convergence theorem:
Definition: $f_{n} \nearrow f$ if $f_{n}(x) \leq f_{n+1}(x)$ for all n and $f_{n} \rightarrow f$ a.e.
Monotone Convergence Theorem: If $f_{n} \geq 0$ with $f_{n} \nearrow f$ then

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int f
$$

Notice how few assumptions there are here!!
Proof: Since $f_{n}(x) \leq f(x)$ a.e. we necessarily have $\int f_{n} \leq \int f$ and taking limsup we get

$$
\limsup _{n \rightarrow \infty} \int f_{n} \leq \int f
$$

But then by Fatou we get

$$
\int f \leq \liminf _{n \rightarrow \infty} \int f_{n} \leq \limsup _{n \rightarrow \infty} \int f_{n} \leq \int f
$$

Which shows that

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int f \square
$$

