
LECTURE 21: THE LEBESGUE INTEGRAL (II)

1. Recap: Level 1 and 2

LEVEL 1: (f simple) The Lebesgue Integral of φ =
∑N

k=1 ak 1Ek is∫
Rd
φ(x)dx =

N∑
k=1

akm(Ek)

LEVEL 2: (f bounded and finite support)∫
f(x)dx = lim

k→∞

∫
φk(x)dx

Where {φk} is any sequence of bounded simple functions (with same
support as f) such that φk → f pointwise

Last time, we’ve seen that this limit indeed exists and is independent
of the sequence φk used.

Moreover, you can check that the same properties (linearity, mono-
tonicity, triangle inequality) still hold.

2. Bounded Convergence Theorem

Question: If fn → f pointwise, do we have
∫
fn →

∫
f ?
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In general, the answer is NO:

Non-Example:

Let fn(x) =

{
n if 0 < x < 1

n

0 otherwise

Then fn → 0 pointwise but
∫
fn = 1 for all n so

∫
fn 9

∫
0

The Bounded Convergence Theorem says YES if all the fn are bounded:

Bounded Convergence Theorem: If {fn} is a sequence of functions
bounded by M (and supported on E with m(E) < ∞) and fn → f
a.e., then

lim
n→∞

∫
|fn − f | = 0

Note: In particular implies that limn→∞
∫
fn =

∫
f

Proof: Similar to the proof given last time.

Let ε > 0 be given, then since m(E) <∞, by Egorov, there is Aε ⊆ E
with fn → f uniformly on Aε and m(E − Aε) < ε.

By uniform conv, there is N such that if n > N then |fn(x)− f(x)| < ε
for all x ∈ Aε, but then

∫
E

|f − fn| dx =

(∫
Aε

+

∫
E−Aε

)
|fn − f |

=

∫
Aε

|fn(x)− f(x)|︸ ︷︷ ︸
<ε

dx+

∫
E−Aε

|fn(x)− f(x)|︸ ︷︷ ︸
≤2M

dx

≤m(Aε) ε+ 2M m(E − Aε)
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≤m(E)ε+ 2Mε = ε (m(E) + 2M) �

This is the first of 3 convergence theorems that we’ll see in this course.

3. Riemann vs. Lebesgue Integral

As an interlude, let’s compare the Riemann and Lebesgue integrals
and show that the Lebesgue one is strictly better:

Definition φ is a step function if

φ(x) =
N∑
k=1

ak 1Rk Rk rectangle

(It’s simple function but the base is a rectangle)

Theorem: If f is Riemann integrable on [a, b], then f is measurable

and

∫ R
[a,b]

f(x)dx =

∫ L
[a,b]

f(x)dx

Proof:

STEP 1: By definition, a Riemann integrable function is bounded,
say |f(x)| ≤M

Riemann integration says there is a sequence {φk} (lower function) and
{ψk} (upper function) of step functions bounded by M such that

φ1(x) ≤ φ2(x) ≤ · · · ≤ f ≤ · · · ≤ ψ2(x) ≤ ψ1(x)

lim
k→∞

∫ R
[a,b]

φk(x)dx = lim
k→∞

∫ R
[a,b]

ψk(x)dx =:

∫ R
[a,b]

f(x)dx
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Upshot: Since step functions are simple functions, by LEVEL 1 of
the Lebesgue integral, we have∫ R

[a,b]

φk(x)dx =

∫ L
[a,b]

φk(x)dx and same for ψk

STEP 2: Notice that φk → φ̃ for some φ̃ (since φk increases) and

ψk → ψ̃ for some ψ̃ (since ψk decreases). Hence, since φk and ψk are
bounded, by the BCT, we get

lim
k→∞

∫ L
[a,b]

φk(x)dx =

∫ L
[a,b]

φ̃(x)dx and same for ψk

Hence

∫ L
[a,b]

φ̃(x)dx = lim
k→∞

∫ L
[a,b]

φk(x)dx = lim
k→∞

∫ R
[a,b]

φk(x)dx =:

∫ R
[a,b]

f(x)dx

Therefore

∫ L
[a,b]

ψ̃ − φ̃ =

(∫ R
[a,b]

f

)
−
(∫ R

[a,b]

f

)
= 0

But since ψk−φk ≥ 0, we get ψ̃− φ̃ ≥ 0 and so the integral being zero
implies that ψ̃ = φ̃ a.e. (see homework), but since φk ≤ f ≤ ψk we get

φ̃ ≤ f ≤ ψ̃ and so ψ̃ = φ̃ = f a.e.

Since φ̃ is measurable, being a limit of (measurable) step functions, it
follows that f is measurable X

STEP 3: Finally, since φk → f , once again by the BCT we have∫ L
[a,b]

f(x)dx
BCT
= lim

k→∞

∫ L
[a,b]

φk(x)dx =

∫ R
[a,b]

f(x)dx �

Non-Example: Define f : [0, 1]→ R by
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f(x) =

{
0 if x if rational

1 if x is irrational

Then f is not Riemann integrable on [0, 1] since the upper-sums are
always 1 and the lower sums are always 0.

However, notice f(x) = 1E where E = [0, 1]\Q and so∫
f = m(E) = m([0, 1])−m(Q ∩ [0, 1]) = 1− 0 = 1

So the Lebesgue integral is strictly better than the Riemann integral.

4. Level 3: Non-Negative Functions

In general, if f ≥ 0 is measurable (could be ±∞), then we define the
Lebesgue integral simply as:

Definition: ∫
f(x)dx = sup

g

∫
g(x)dx

Where the sup is taken over all g from LEVEL 2 with 0 ≤ g ≤ f ,
that is g is bounded and supported on a set of finite measure.

Definition: f is integrable if
∫
|f(x)| dx <∞

(We can remove the absolute value here since f is non-negative)

Example:

fa(x) =

{
1
|x|a if |x| ≤ 1

0 if |x| > 1
and ga(x) =

{
0 if |x| ≤ 1
1
|x|a if |x| > 1
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fa is integrable when a < d and ga is integrable when a > d (see HW)

Once again, the same properties (linearity, additivity, monotonicity)
hold. The only non-obvious part is the following part of linearity:

Fact:

∫
f + g =

∫
f +

∫
g

Proof: ≥ Suppose φ ≤ f and ψ ≤ g where φ and ψ are bounded and
supported on a set of finite measure, then so is φ+ψ and φ+ψ ≤ f+g
and therefore by definition of

∫
f + g we have∫

f + g ≥
∫
φ+ ψ

LEVEL 2
=

∫
φ+

∫
ψ

Taking the sup over φ ≤ f , we get∫
f + g ≥

(∫
f

)
+

∫
ψ

And taking the sup over ψ ≤ g we get∫
f + g ≥

∫
f +

∫
gX

≤ Suppose η is bounded and supported on a set of finite measure with
η ≤ f+g. Let η1(x) =: min(f(x), η(x)) and η2 =: η−η1 (bounded and
supported on sets of finite measure), and note that η1 ≤ f and η2 ≤ g∫

η
LEVEL 2

=

∫
η1 + η2 =

∫
η1 +

∫
η2

DEF
≤

∫
f +

∫
g

Taking the sup over η ≤ f + g gives the desired inequality.

Fact: If f is integrable and 0 ≤ g ≤ f then g is integrable
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Follows because
∫
|g| ≤

∫
|f | <∞

Fact: If f is integrable then f(x) <∞ for almost every x

Proof: Let Ek = {x | f(x) ≥ k} and E∞ = {x | f(x) =∞} then∫
Rd
f ≥

∫
Ek

f ≥
∫
Ek

k = km(Ek)

Hence m(Ek) ≤ 1
k

(∫
f
)
→ 0, hence limk→∞m(Ek) = 0 but since

Ek ↘ E∞ and m(Ek) <∞, we get m(E∞) = 0 (from homework)

5. Fatou’s Lemma

Recall: If fn → f then
∫
fn 9

∫
f . But what is true is that

∫
f is

always smaller:

Fatou’s Lemma If fn ≥ 0 and fn → f pointwise a.e. then∫
f ≤ lim inf

n→∞

∫
fn

So
∫
f is always smaller than the smallest possible limit of

∫
fn

Application: This is INCREDIBLY useful in the calculus of vari-
ations and PDE, which deals with minimizing integrals. Usually, the
best you can do is to find sequence fn of minimizers that converges to
some f . Fatou says that

∫
f is even smaller than all the

∫
fn (in the

liminf sense), and so f is usually the minimizer you’re looking for!

Proof: We want to use the LEVEL 3 definition of the integral: Sup-
pose 0 ≤ g ≤ f where g is bounded and supported on some E with
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m(E) <∞.

Let gn(x) =: min(g(x), fn(x)) then gn → g a.e. so by the BCT we have∫
gn →

∫
g

By construction gn ≤ fn and so
∫
gn ≤

∫
fn and so taking lim inf on

both sides we get lim infn→∞
∫
gn ≤ lim infn→∞

∫
fn and so∫

g = lim
n→∞

∫
gn = lim inf

n→∞

∫
gn ≤ lim inf

n→∞

∫
fn∫

g ≤ lim inf
n→∞

∫
fn

Finally, taking the sup over g yields the result �

6. The Monotone Convergence Theorem

We are now ready to prove our second convergence theorem:

Definition: fn ↗ f if fn(x) ≤ fn+1(x) for all n and fn → f a.e.

Monotone Convergence Theorem: If fn ≥ 0 with fn ↗ f then

lim
n→∞

∫
fn =

∫
f

Notice how few assumptions there are here!!

Proof: Since fn(x) ≤ f(x) a.e. we necessarily have
∫
fn ≤

∫
f and

taking lim sup we get

lim sup
n→∞

∫
fn ≤

∫
f
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But then by Fatou we get∫
f ≤ lim inf

n→∞

∫
fn ≤ lim sup

n→∞

∫
fn ≤

∫
f

Which shows that

lim
n→∞

∫
fn =

∫
f �
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