LECTURE 22: THE MEAN VALUE THEOREM

1. USE THE CHEN Lu!

Video: Proof of the Chen Lu

Chain Rule (Chen Lu)

Proof: From last time we have:

Where O(h) goes to 0 as h — 0. This implies:

g(z+h) —g(x) = h(g'(x) + O(h))
Use this with f(z) instead of x and f(z + h) — f(z) instead of h:

g(Ha)+ [ (x + h) = L)) —g(f(2)) = (f(x + h) = f(2)) [¢'(f(2)) + O(f(z + h) — f(x))]
g(f(a+h))=g(f(2)) = (f(z + h) = f(2)) [¢ (f(2)) + O(f(z + h) — f())]

Note: This is valid even if f(x+h) = f(x), which corrects the faulty
proof from last time.

Date: Thursday, November 11, 2021.


https://youtu.be/BicyN84QYbQ
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Dividing both sides by h, we get:

oz + 1) —g(f(@) _ (f ()~ <”f>> §(f(@) +O(f(x + 1) — f(x)

N h _ h g
~— N —~ v —0
—(gof) () S f(2) N ~

Now if h — 0, we get f(z + h) — f(z) — 0 (by continuity of f) and
therefore O(f(x+h) — f(x)) — 0 (by definition of O), hence we obtain

(9o f) (z) = f(x)g (f(2)) = ¢ (f(2))f(x) O

For the rest of today, we’ll prove a couple of theorems related to deriva-
tives, such as Rolle’s Theorem and the Mean Value Theorem.

2. FERMAT’S THEOREM

Video: Rolle’s Theorem ]

f has a local max at x if f(x) < f(zg) for all = near x
(similar for local min and strict local max/min)

Fermat’s Theorem

If f is differentiable on (a,b) and has a local max or min at x,
then f'(xg) =0



https://www.youtube.com/watch?v=QvcaTltKHVg
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f(xo) )
s f(xp)=10

f(x)

X0 X

It’s this theorem that makes optimization problems possible! It’s be-
cause of this that you have to find the critical points of f, that is,
points where f'(xy) = 0 or where f'(x) is undefined.

Proof: Assume WLOG that f has a local max at z( (replace f with
— f otherwise).

Then, by the definition of a derivative:

f(x) — f(xo) — lim f(x) — f(xo)

T—T0 Tr — X x—>(x0)+‘ r — Xy
TV

<0

<0

Here we used f(x) < f(xg) for z sufficiently close to x( since f has a
local max, and so %ﬁxo) < 0 (since x > x( by assumption).
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Therefore f'(xg) < 0, being the limit of a negative function.

Similarly, considering the limit as x — (o)~ we get f(xo) > 0, and so
f(x0) =0 O

3. ROLLE’S THEOREM

The next theorem will have you Rolle on the floor laughing ®. It can
be viewed as a special case of the Mean Value Theorem:

Rolle’s Theorem

Suppose f is continuous on [a,b] and differentiable on (a,b). If
f(a) = f(b), then there is some ¢ in (a, b) with f'(¢) =0

fle)=0

f(b)

a C b
Proof: Easy! Since f is continuous on [a,b], by the Extreme Value

Theorem, f must have a max M and a min m on [a,b]. We cannot
have M and m be both a and b, otherwise m = f(a) = f(b) = M, and
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f would be constant. Therefore f must have a max or a min at some
point ¢ in (a,b) and by Fermat’s Theorem, we have f'(c) =0 O

4. MEAN VALUE THEOREM

Video: Mean Value Theorem

We are now ready to state the third and final Value Theorem: The
Mean Value Theorem. It can be viewed as the bigger sibling of Rolle,
but surprisingly we can use Rolle to prove the MVT!

Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b). Then there
is ¢ in (a,b) such that

(b, /(b))

fb) - f(a)
b-a

f'(e)

(@ f(a))

a C b



https://youtu.be/PloNnv_DWas
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Interpretation: MV'T says that there is some point on your car trip

where your instantaneous velocity f’(c) equals to your average velocity

f(b)—f(a)
b—a

Note: If f(b) = f(a), then f(bg;{(a) = 0 so f'(¢c) = 0 and we recover
Rolle’s Theorem

Proof: The idea is to apply Rolle’s theorem to a special function.
Notice the equation of the line connecting (a, f(a)) and (b, f(b)) is

f(b)_f(a)) (SC—CL)

Secant :f(a)+< —

Let: g(z) = f(z) — Secant = f(x) — f(a) — <%§(a)) (x — a)

Then: g(a) = f(a) - f(0) ~ (H =) (a0 =0

f(b) = f(a)
b—a

g(a) = g(b) and by Rolle’s Theorem, there is ¢ with ¢'(c) = 0, that is

ro- (10=10)

g(b) = f(b) = f(a) - (b—a) = f(b) = f(a) = f(b)+ f(a) =0

(ﬂ@<ﬂ§%®> .

Let’s illustrate the power of the MVT by showing 3 applications:
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5. APPLICATION 1: ANTIDERIVATIVES

If f'(x) =0 for all  in (a,b), then f is constant

Proof: Suppose not, then there are = # y such that f(z) # f(y), but
then by the MVT, there is ¢ between x and y such that

But this contradicts f(x) # f(y) =<« [

Coro-Corollary

If f'(z) = ¢'(z) for all z in (a,b), then f(z) = g(x) + C for some
constant C'

Proof: Let h(z) = f(x) — g(x), then h(z) = f'(x) — ¢'(x) = 0, so
h(z) = C, that is f(x) — g(x) = C so f(x) = g(z) + C O

This says that two antiderivatives differ by a constant! This is why
formulas like [ 2?dz = 52% 4 C' are valid

6. APPLICATION 2: INCREASING/DECREASING

f is strictly increasing if x <y = f(z) < f(y)
(similar for strictly decreasing, and increasing and decreasing)



8 LECTURE 22: THE MEAN VALUE THEOREM

If f'(x) > 0 for all x, then f is strictly decreasing

Proof: Suppose x < y, then by the MVT, we get

fy) — f(=)

- = f'(c)>0= f(y) — flx) > 0= f(y) > f(z) O

7. APPLICATION 3: FIXED POINTS

Video: MVT and Fixed Points

f has a fixed point if f(x) = = for some z

N y =X
f(x)=xp——- 2
|
I £(x)
|
| N
(@) X 4



https://youtu.be/zEe5J3X6ISE
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If f'(x) # 1 for all z, then f has at most one fixed point

Proof: Suppose f has two fixed points a and b. Then f(a) = a and
f(b) = b, then by the MVT, we get

Y
b—a
b —a _ (C)
=f'(c)
Which contradicts the fact that f'(x) # 1 for all z =<« ]

Combining this with the fact from the section on the Intermediate
Value Theorem, we get:

If f:[0,1] — [0,1] is continuous on [0, 1] and f'(x) # 1 for all z,
then f has exactly one fixed point

8. INTERMEDIATE VALUE THEOREM FOR DERIVATIVES

Warning: If f is differentiable, f’ doesn’t have to be continuous!

Non-Example 1:
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Wi
-

f(x) = x%sin(1/x)  f'(x) ~ —cos(1/x)

Then f'(0) = 0 because:

f'(0) = lim @) = J(0) = lim wsin () ~ 0 = lim x sin (l) =0 (Squeeze Thm)

z—0 xTr — z—0 x z—0 x
But f’ is not continuous at 0 because
g : (1 9 1 1 , 1
lim f'(z) = lim 2zsin ( = | +2°cos ( = | | =—— | = lim —cos | — | DNE
x—0 z—0 x x x x—0 x
0
%

We certainly cannot have lim,_, f'(z) = f’(0), and f isn’t continuous.

Even worse, can check that for the following example, ¢’(x) blows up:

Non-Example 2:
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WAL A
Mivv

g(x) = x3/?sin(1/x) g'(x)

The surprising fact is that even if f/ might be discontinuous, it still
has the Intermediate Value Property, so it’s not that bad after all:

IVT for Derivatives

If ¢ is any number between f'(a) and f/(b), then there is z in (a, b)
such that f'(x) = ¢

So f’ can never have jump discontinuities (o/w it would omit values
J

F(B) |

f'(a)| -
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Proof: Beautiful proof that illustrates the “sliding secant method.”
WLOG, assume f'(a) < f'(b)

Let h > 0 be a fixed (but small) constant, and consider

fla+h) - f(x)

S(x) = ,

S(z) is the slope of the secant line from (z, f(z)) to (x + h, f(z + h)).

S(x)

The idea is to simply “slide” S(z) from z =atox=b—h
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S(x) S (b-h)

a b

From the Chen Lu Fact at the beginning, we have:

fla+h) - fla)
h

50— = =IO i) o~ o

Since f'(a) < ¢ < f'(b), for h small enough we get S(a) < c < S(b—h)

S(a) = = f'(a) + O(h) = f'(a)

But S(z) is continuous, so by the IVT, there is « such that S(x) = ¢

that is: fle+h) = f() =c
h
By the MVT, there is some p in (z, z+h) such that w = f'(p),

so the above becomes

1possibly for a different function O(h)
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fip) =c
Which is what we wanted (with p instead of x)



	1. Use the Chen Lu!
	2. Fermat's Theorem
	3. Rolle's Theorem
	4. Mean Value Theorem
	5. Application 1: Antiderivatives
	6. Application 2: Increasing/Decreasing
	7. Application 3: Fixed Points
	8. Intermediate Value Theorem for Derivatives

