LECTURE 22: THE MEAN VALUE THEOREM

1. Use the Chen Lu!

Video: Proof of the Chen Lu

Chain Rule (Chen Lu)

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

Proof: From last time we have:

$$
\frac{g(x+h)-g(x)}{h}=g^{\prime}(x)+O(h)
$$

Where $O(h)$ goes to 0 as $h \rightarrow 0$. This implies:

$$
g(x+h)-g(x)=h\left(g^{\prime}(x)+O(h)\right)
$$

Use this with $f(x)$ instead of x and $f(x+h)-f(x)$ instead of h :
$g(f(x)+f(x+h)-f(x))-g(f(x))=(f(x+h)-f(x))\left[g^{\prime}(f(x))+O(f(x+h)-f(x))\right]$ $g(f(x+h))-g(f(x))=(f(x+h)-f(x))\left[g^{\prime}(f(x))+O(f(x+h)-f(x))\right]$

Note: This is valid even if $f(x+h)=f(x)$, which corrects the faulty proof from last time.

Date: Thursday, November 11, 2021.

Dividing both sides by h, we get:

Now if $h \rightarrow 0$, we get $f(x+h)-f(x) \rightarrow 0$ (by continuity of f) and therefore $O(f(x+h)-f(x)) \rightarrow 0$ (by definition of O), hence we obtain

$$
(g \circ f)^{\prime}(x)=f^{\prime}(x) g^{\prime}(f(x))=g^{\prime}(f(x)) f^{\prime}(x)
$$

For the rest of today, we'll prove a couple of theorems related to derivatives, such as Rolle's Theorem and the Mean Value Theorem.

2. Fermat's Theorem

Video: Rolle's Theorem

Definition

f has a local max at x_{0} if $f(x) \leq f\left(x_{0}\right)$ for all x near x_{0}
(similar for local min and strict local max/min)

Fermat's Theorem

If f is differentiable on (a, b) and has a local max or min at x_{0}, then $f^{\prime}\left(x_{0}\right)=0$

It's this theorem that makes optimization problems possible! It's because of this that you have to find the critical points of f, that is, points where $f^{\prime}\left(x_{0}\right)=0$ or where $f^{\prime}\left(x_{0}\right)$ is undefined.

Proof: Assume WLOG that f has a local max at x_{0} (replace f with $-f$ otherwise).

Then, by the definition of a derivative:

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow\left(x_{0}\right)^{+}} \underbrace{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}}_{\leq 0} \leq 0
$$

Here we used $f(x) \leq f\left(x_{0}\right)$ for x sufficiently close to x_{0} since f has a local max, and so $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leq 0$ (since $x>x_{0}$ by assumption).

Therefore $f^{\prime}\left(x_{0}\right) \leq 0$, being the limit of a negative function.
Similarly, considering the limit as $x \rightarrow\left(x_{0}\right)^{-}$we get $f\left(x_{0}\right) \geq 0$, and so $f^{\prime}\left(x_{0}\right)=0$

3. Rolle's Theorem

The next theorem will have you Rolle on the floor laughing \mathcal{P}. It can be viewed as a special case of the Mean Value Theorem:

Rolle's Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there is some c in (a, b) with $f^{\prime}(c)=0$

Proof: Easy! Since f is continuous on $[a, b]$, by the Extreme Value Theorem, f must have a $\max M$ and a $\min m$ on $[a, b]$. We cannot have M and m be both a and b, otherwise $m=f(a)=f(b)=M$, and
f would be constant. Therefore f must have a max or a min at some point c in (a, b) and by Fermat's Theorem, we have $f^{\prime}(c)=0$

4. Mean Value Theorem

Video: Mean Value Theorem

We are now ready to state the third and final Value Theorem: The Mean Value Theorem. It can be viewed as the bigger sibling of Rolle, but surprisingly we can use Rolle to prove the MVT!

Mean Value Theorem

If f is continuous on $[a, b]$ and differentiable on (a, b). Then there is c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Interpretation: MVT says that there is some point on your car trip where your instantaneous velocity $f^{\prime}(c)$ equals to your average velocity $\frac{f(b)-f(a)}{b-a}$

Note: If $f(b)=f(a)$, then $\frac{f(b)-f(a)}{b-a}=0$ so $f^{\prime}(c)=0$ and we recover Rolle's Theorem

Proof: The idea is to apply Rolle's theorem to a special function. Notice the equation of the line connecting $(a, f(a))$ and $(b, f(b))$ is

$$
\text { Secant }=f(a)+\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)
$$

Let: $g(x)=f(x)-$ Secant $=f(x)-f(a)-\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)$

Then: $g(a)=f(a)-f(a)-\left(\frac{f(b)-f(a)}{b-a}\right)(a-a)=0$
$g(b)=f(b)-f(a)-\frac{f(b)-f(a)}{b-a}(b-a)=f(b)-f(a)-f(b)+f(a)=0$
$g(a)=g(b)$ and by Rolle's Theorem, there is c with $g^{\prime}(c)=0$, that is

$$
\begin{aligned}
& f^{\prime}(c)-\left(\frac{f(b)-f(a)}{b-a}\right)=0 \\
& f^{\prime}(c)=\left(\frac{f(b)-f(a)}{b-a}\right)
\end{aligned}
$$

Let's illustrate the power of the MVT by showing 3 applications:

5. Application 1: Antiderivatives

Corollary

If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant

Proof: Suppose not, then there are $x \neq y$ such that $f(x) \neq f(y)$, but then by the MVT, there is c between x and y such that

$$
\begin{aligned}
& \frac{f(y)-f(x)}{y-x}=f^{\prime}(c)=0 \\
& f(y)-f(x)=0 \\
& f(x)=f(y)
\end{aligned}
$$

But this contradicts $f(x) \neq f(y) \Rightarrow \Leftarrow$

Coro-Corollary

If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), then $f(x)=g(x)+C$ for some constant C

Proof: Let $h(x)=f(x)-g(x)$, then $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$, so $h(x)=C$, that is $f(x)-g(x)=C$ so $f(x)=g(x)+C$

This says that two antiderivatives differ by a constant! This is why formulas like $\int x^{2} d x=\frac{1}{3} x^{3}+C$ are valid

6. Application 2: Increasing/Decreasing

Definition

f is strictly increasing if $x<y \Rightarrow f(x)<f(y)$
(similar for strictly decreasing, and increasing and decreasing)

Corollary
If $f^{\prime}(x)>0$ for all x, then f is strictly decreasing

Proof: Suppose $x<y$, then by the MVT, we get

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)>0 \Rightarrow f(y)-f(x)>0 \Rightarrow f(y)>f(x)
$$

7. Application 3: Fixed Points

Video: MVT and Fixed Points

Definition

f has a fixed point if $f(x)=x$ for some x

Corollary

If $f^{\prime}(x) \neq 1$ for all x, then f has at most one fixed point
Proof: Suppose f has two fixed points a and b. Then $f(a)=a$ and $f(b)=b$, then by the MVT, we get

$$
\begin{aligned}
\frac{f(b)-f(a)}{b-a} & =f^{\prime}(c) \\
\frac{b-a}{b-a} & =f^{\prime}(c) \\
1 & =f^{\prime}(c)
\end{aligned}
$$

Which contradicts the fact that $f^{\prime}(x) \neq 1$ for all $x \Rightarrow \Leftarrow$
Combining this with the fact from the section on the Intermediate Value Theorem, we get:

Theorem:

If $f:[0,1] \rightarrow[0,1]$ is continuous on $[0,1]$ and $f^{\prime}(x) \neq 1$ for all x, then f has exactly one fixed point

8. Intermediate Value Theorem for Derivatives

Warning: If f is differentiable, f^{\prime} doesn't have to be continuous!

Non-Example 1:

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

$$
f(x)=x^{2} \sin (1 / x)
$$

$f^{\prime}(x) \approx-\cos (1 / x)$

Then $f^{\prime}(0)=0$ because:

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)-0}{x}=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0 \quad \text { (Squeeze Thm) }
$$

But f^{\prime} is not continuous at 0 because
$\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} \underbrace{2 x \sin \left(\frac{1}{x}\right)}_{\rightarrow 0}+x^{2} \cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0}-\cos \left(\frac{1}{x}\right)$ DNE
We certainly cannot have $\lim _{x \rightarrow 0} f^{\prime}(x)=f^{\prime}(0)$, and f^{\prime} isn't continuous.
Even worse, can check that for the following example, $g^{\prime}(x)$ blows up:
Non-Example 2:

$$
g(x)= \begin{cases}x^{\frac{3}{2}} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

$$
g(x)=x^{3 / 2} \sin (1 / x)
$$

$g^{\prime}(x)$

The surprising fact is that even if f^{\prime} might be discontinuous, it still has the Intermediate Value Property, so it's not that bad after all:

IVT for Derivatives

If c is any number between $f^{\prime}(a)$ and $f^{\prime}(b)$, then there is x in (a, b) such that $f^{\prime}(x)=c$

So f^{\prime} can never have jump discontinuities (o/w it would omit values)

Proof: Beautiful proof that illustrates the "sliding secant method."
WLOG, assume $f^{\prime}(a)<f^{\prime}(b)$
Let $h>0$ be a fixed (but small) constant, and consider

$$
S(x)=\frac{f(x+h)-f(x)}{h}
$$

$S(x)$ is the slope of the secant line from $(x, f(x))$ to $(x+h, f(x+h))$.

The idea is to simply "slide" $S(x)$ from $x=a$ to $x=b-h$

From the Chen Lu Fact at the beginning, we have:

$$
\begin{gathered}
S(a)=\frac{f(a+h)-f(a)}{h}=f^{\prime}(a)+O(h) \approx f^{\prime}(a) \\
S(b-h)=\frac{f(b)-f(b-h)}{h}=f^{\prime}(b)+O(h) \square^{1} \approx f^{\prime}(b)
\end{gathered}
$$

Since $f^{\prime}(a)<c<f^{\prime}(b)$, for h small enough we get $S(a)<c<S(b-h)$ But $S(x)$ is continuous, so by the IVT, there is x such that $S(x)=c$

$$
\text { that is: } \frac{f(x+h)-f(x)}{h}=c
$$

By the MVT, there is some p in $(x, x+h)$ such that $\frac{f(x+h)-f(x)}{h}=f^{\prime}(p)$, so the above becomes

[^0]$$
f^{\prime}(p)=c
$$

Which is what we wanted (with p instead of x)

[^0]: $1_{\text {possibly for a different function }} O(h)$

