LECTURE 22: DOUBLE INTEGRALS (II)

1. Double Integrals over general regions

Video: Double Integrals over General Regions

So far we have done the case where the base of our cake is a rectangle, but now we can also do the one where the base is any general region.

Example 1:

Find $\int \int_D x^2 y \, dx dy$ where D is the region between the curves $y = x^2$ and $y = 8 - x^2$

STEP 1: Picture (important)

Date: Monday, October 18, 2021.

Here D stands for domain of integration; it's the base of our cake and the space where x and y lie in.

Analogy: Here we want to find the volume of the cake whose base is D and whose height is $z = x^2y$

STEP 2: Draw *D*

STEP 3: Find inequalities for x and y

This is the trickiest part, here is where our picture helps

Useful Trick: For double integration problems, it's useful to use: Smaller $\leq y \leq$ Bigger $x^2 \leq y \leq 8 - x^2$

For x, notice that the bounds are given precisely by the points of intersection of the parabolas:

Points of Intersection:

$$x^{2} = 8 - x^{2}$$
$$2x^{2} = 8$$
$$x^{2} = 4$$
$$x = \pm 2$$

Therefore we get:

$$\begin{cases} x^2 \le y \le 8 - x^2 \\ -2 \le x \le 2 \end{cases}$$

STEP 4: Integrate

$$\int \int_{D} x^{2}y \, dx \, dy$$

= $\int_{-2}^{2} \left(\int_{x^{2}}^{8-x^{2}} x^{2}y \, dy \right) dx$
= $\int_{-2}^{2} \left[x^{2} \left(\frac{1}{2} y^{2} \right) \right]_{y=x^{2}}^{y=8-x^{2}} dx$
= $\int_{-2}^{2} \frac{1}{2} x^{2} \left(8 - x^{2} \right)^{2} - \frac{1}{2} x^{2} \left(x^{2} \right)^{2} dx$
= $\int_{-2}^{2} \frac{1}{2} x^{2} \left(8 - x^{2} \right)^{2} - \frac{1}{2} x^{6} dx$
= $2 \int_{0}^{2} \frac{1}{2} x^{2} \left(8 - x^{2} \right)^{2} - \frac{1}{2} x^{6} dx$ (The isometry of the equation of the

(The integrand is even)

$$= \int_{0}^{2} x^{2} \left(64 - 16x^{2} + x^{4} \right) - x^{6} dx$$

$$= \int_{0}^{2} 64x^{2} - 16x^{4} + x^{6} - x^{6} dx$$

$$= \left[\frac{64}{3} x^{3} - \frac{16}{5} x^{5} \right]_{0}^{2}$$

$$= \frac{64}{3} \times 8 - \frac{16}{5} \times 32$$

$$= \frac{512}{3} - \frac{512}{5}$$

$$= 512 \left(\frac{1}{3} - \frac{1}{5} \right)$$

$$= \frac{1024}{15}$$

Note: This seems very daunting at first, but it's always the same technique: Draw a picture, find inequalities, and integrate.

 \triangle Make sure the outer integral only has constants! For instance, your integral shouldn't be $\int_{x^2}^{8-x^2} \int_{-2}^2 x^2 y$

Example 2:

Find the volume of the tetrahedron under 4x + 2y + z = 4 in the first octant.

STEP 1: Picture:

Note: *Could* use the normal vector to draw the tetrahedron, but here is is much easier to do with intercepts:

Intercepts:

- *z*-Intercept (x = 0, y = 0): 4(0) + 2(0) + $z = 4 \Rightarrow z = 4$
- y-Intercept (x = 0, z = 0): 4(0) + 2y + 0 = 4 $\Rightarrow 2y = 4 \Rightarrow y = 2$
- x-Intercept (y = 0, z = 0): 4x + 2(0) + 0 = 4 \Rightarrow 4x = 4 \Rightarrow x = 1

STEP 2:

Volume =
$$\int \int_D 4 - 4x - 2y \, dx \, dy$$

STEP 3: Inequalities

To find the equation of the line, either find the equation of the line going through (1,0) and (0,2), or (easier) notice z = 0 in D, and hence:

$$4x + 2y + 0 = 4$$

$$\Rightarrow 2y = 4 - 4x$$

$$\Rightarrow y = 2 - 2x$$

For the inequalities, as before, use

Smaller
$$\leq y \leq$$
 Bigger
 $0 \leq y \leq 2 - 2x$
 $0 \leq x \leq 1$

STEP 4: Integrate

Volume

$$= \int_{0}^{1} \int_{0}^{2-2x} 4 - 4x - 2y \, dy dx$$

$$= \int_{0}^{1} \left[(4 - 4x)y - y^{2} \right]_{y=0}^{y=2-2x} dx$$

$$= \int_{0}^{1} (4 - 4x)(2 - 2x) - (2 - 2x)^{2} - 0 + 0 dx$$

$$= \int_{0}^{1} (4)(1 - x)(2)(1 - x) - 2^{2}(1 - x)^{2} dx$$

$$= \int_{0}^{1} 8(1 - x)^{2} - 4(1 - x)^{2} dx$$

$$= \int_{0}^{1} 4(x - 1)^{2} dx$$

$$= \left[\frac{4}{3}(x - 1)^{3} \right]_{0}^{1}$$

$$= \frac{4}{3}$$

2. Horizontal Regions

Example 3:

Calculate the following integral, where D is the region between $y = \frac{x}{2}$ and $y^2 = x + 3$

$$\int \int_D xy dx dy$$

STEP 1: Picture

(To draw this, notice $y^2 = x + 3 \Rightarrow x = y^2 - 3$ and tilt your head)

STEP 2: Inequalities

Here D is a "horizontal" region, so have to do x first:

Note: For horizontal regions, get

Left
$$\leq x \leq$$
 Right
 $y^2 - 3 \leq x \leq 2y$
? $\leq y \leq$?

Points of intersection

8

$$2y = y^2 - 3$$

 $y^2 - 2y - 3 = 0$
 $(y+1)(y-3) = 0$
 $y = -1, 3$

Inequalities

$$y^2 - 3 \le x \le 2y$$
$$-1 \le y \le 3$$

$$\int \int_{D} xy dx dy = \int_{-1}^{3} \int_{y^{2}-3}^{2y} xy \, dx dy$$

= $\int_{-1}^{3} \left[\left(\frac{x^{2}}{2} \right) y \right]_{x=y^{2}-3}^{x=2y} dy$
= $\int_{-1}^{3} \frac{(2y)^{2} y}{2} - \frac{(y^{2}-3)^{2} y}{2} dy$
= $\int_{-1}^{3} \frac{(4y^{2}) y}{2} - \frac{1}{2} (y^{4} - 6y^{2} + 9) y \, dy$
= $\int_{-1}^{3} 2y^{3} - \frac{y^{5}}{2} + 3y^{3} - \frac{9}{2} y \, dy$
= $\int_{-1}^{3} 5y^{3} - \frac{y^{5}}{2} - \frac{9}{2} y \, dy$

$$= \left[\frac{5}{4}y^4 - \frac{y^6}{12} - \frac{9y^2}{4}\right]_{-1}^3$$

= $\frac{5}{4}\left(3^4 - (-1)^4\right) - \frac{1}{12}\left(3^6 - (-1)^6\right) - \frac{9}{4}\left(3^2 - (-1)^2\right)$
= $\frac{5}{4} \times 80 - \frac{1}{12} \times 728 - \frac{9}{4} \times 8$
= $100 - \frac{182}{3} - 18$
= $82 - \frac{182}{3}$
= $\frac{246 - 182}{3}$
= $\frac{64}{3}$

3. An Impossible Integral?

Video: Changing Order of Integration

Let's use the idea above to calculate an impossible integral!

Example 4:

Calculate the following integral:

$$\int_0^1 \int_x^1 \sin(y^2) dy dx$$

Note: This integral is impossible to evaluate directly, since $\sin(y^2)$ doesn't have an anti-derivative! Instead, use the following:

Trick: Change the order of x and y

STEP 1: Find D

Here the region is

$$\begin{aligned} x \le y \le 1\\ 0 \le x \le 1 \end{aligned}$$

Picture:

STEP 2: Write D as a horizontal region

Left
$$\leq x \leq$$
 Right
 $0 \leq x \leq y$
 $0 \leq y \leq 1$

STEP 3: Integrate

$$\int_{0}^{1} \int_{x}^{1} \sin(y^{2}) dy dx$$

= $\int_{0}^{1} \int_{0}^{y} \sin(y^{2}) dx dy$
= $\int_{0}^{1} [\sin(y^{2}) x]_{x=0}^{x=y} dy$
= $\int_{0}^{1} \sin(y^{2}) y dy$
 $(u = y^{2}, du = 2y dy \Rightarrow y = \frac{1}{2} du, u(0) = 0, u(1) = 1)$
= $\int_{0}^{1} \sin(u) \left(\frac{1}{2} du\right)$
= $\left[-\frac{1}{2} \cos(u)\right]_{0}^{1}$
= $\frac{1}{2} - \frac{1}{2} \cos(1)$

Note: For another fun application of this Fubini trick, check out the following video, sometimes called a Frullani Integral:

Video: Multivariable Integral