LECTURE 22: DOUBLE INTEGRALS (II)

1. Double Integrals over general regions

Video: Double Integrals over General Regions
So far we have done the case where the base of our cake is a rectangle, but now we can also do the one where the base is any general region.

Example 1:

Find $\iint_{D} x^{2} y d x d y$ where D is the region between the curves $y=x^{2}$ and $y=8-x^{2}$

STEP 1: Picture (important)

Date: Monday, October 18, 2021.

Here D stands for domain of integration; it's the base of our cake and the space where x and y lie in.

Analogy: Here we want to find the volume of the cake whose base is D and whose height is $z=x^{2} y$

STEP 2: Draw D

STEP 3: Find inequalities for x and y
This is the trickiest part, here is where our picture helps
Useful Trick: For double integration problems, it's useful to use:

$$
\begin{gathered}
\text { Smaller } \leq y \leq \text { Bigger } \\
x^{2} \leq y \leq 8-x^{2}
\end{gathered}
$$

For x, notice that the bounds are given precisely by the points of intersection of the parabolas:

Points of Intersection:

$$
\begin{aligned}
x^{2} & =8-x^{2} \\
2 x^{2} & =8 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

Therefore we get:

$$
\left\{\begin{aligned}
x^{2} & \leq y \leq 8-x^{2} \\
-2 & \leq x \leq 2
\end{aligned}\right.
$$

STEP 4: Integrate

$$
\begin{aligned}
& \iint_{D} x^{2} y d x d y \\
= & \int_{-2}^{2}\left(\int_{x^{2}}^{8-x^{2}} x^{2} y d y\right) d x \\
= & \int_{-2}^{2}\left[x^{2}\left(\frac{1}{2} y^{2}\right)\right]_{y=x^{2}}^{y=8-x^{2}} d x \\
= & \int_{-2}^{2} \frac{1}{2} x^{2}\left(8-x^{2}\right)^{2}-\frac{1}{2} x^{2}\left(x^{2}\right)^{2} d x \\
= & \int_{-2}^{2} \frac{1}{2} x^{2}\left(8-x^{2}\right)^{2}-\frac{1}{2} x^{6} d x \\
= & 2 \int_{0}^{2} \frac{1}{2} x^{2}\left(8-x^{2}\right)^{2}-\frac{1}{2} x^{6} d x \\
= & \int_{0}^{2} x^{2}\left(8-x^{2}\right)^{2}-x^{6} d x
\end{aligned}
$$

$$
=2 \int_{0}^{2} \frac{1}{2} x^{2}\left(8-x^{2}\right)^{2}-\frac{1}{2} x^{6} d x \quad \text { (The integrand is even) }
$$

$$
\begin{aligned}
& =\int_{0}^{2} x^{2}\left(64-16 x^{2}+x^{4}\right)-x^{6} d x \\
& =\int_{0}^{2} 64 x^{2}-16 x^{4}+x^{6}-x^{6} d x \\
& =\left[\frac{64}{3} x^{3}-\frac{16}{5} x^{5}\right]_{0}^{2} \\
& =\frac{64}{3} \times 8-\frac{16}{5} \times 32 \\
& =\frac{512}{3}-\frac{512}{5} \\
& =512\left(\frac{1}{3}-\frac{1}{5}\right) \\
& =512\left(\frac{5-3}{15}\right) \\
& =\frac{1024}{15}
\end{aligned}
$$

Note: This seems very daunting at first, but it's always the same technique: Draw a picture, find inequalities, and integrate.

Make sure the outer integral only has constants! For instance, your integral shouldn't be $\int_{x^{2}}^{8-x^{2}} \int_{-2}^{2} x^{2} y$

Example 2:

Find the volume of the tetrahedron under $4 x+2 y+z=4$ in the first octant.

STEP 1: Picture:

Note: Could use the normal vector to draw the tetrahedron, but here is is much easier to do with intercepts:

Intercepts:

$z-$ Intercept $(x=0, y=0): 4(0)+2(0)+z=4 \Rightarrow z=4$
y-Intercept $(x=0, z=0): 4(0)+2 y+0=4 \Rightarrow 2 y=4 \Rightarrow y=2$
x-Intercept $(y=0, z=0): 4 x+2(0)+0=4 \Rightarrow 4 x=4 \Rightarrow x=1$
STEP 2:

$$
\text { Volume }=\iint_{D} 4-4 x-2 y d x d y
$$

STEP 3: Inequalities

To find the equation of the line, either find the equation of the line going through $(1,0)$ and $(0,2)$, or (easier) notice $z=0$ in D, and hence:

$$
\begin{aligned}
& 4 x+2 y+0=4 \\
\Rightarrow & 2 y=4-4 x \\
\Rightarrow & y=2-2 x
\end{aligned}
$$

For the inequalities, as before, use

$$
\text { Smaller } \begin{array}{r}
\leq y \leq \text { Bigger } \\
0 \leq y \leq 2-2 x \\
0 \leq x \leq 1
\end{array}
$$

STEP 4: Integrate

$$
\begin{aligned}
& \text { Volume } \\
= & \int_{0}^{1} \int_{0}^{2-2 x} 4-4 x-2 y d y d x \\
= & \int_{0}^{1}\left[(4-4 x) y-y^{2}\right]_{y=0}^{y=2-2 x} d x \\
= & \int_{0}^{1}(4-4 x)(2-2 x)-(2-2 x)^{2}-0+0 d x \\
= & \int_{0}^{1}(4)(1-x)(2)(1-x)-2^{2}(1-x)^{2} d x \\
= & \int_{0}^{1} 8(1-x)^{2}-4(1-x)^{2} d x \\
= & \int_{0}^{1} 4(x-1)^{2} d x \\
= & {\left[\frac{4}{3}(x-1)^{3}\right]_{0}^{1} } \\
= & \frac{4}{3}
\end{aligned}
$$

2. Horizontal Regions

Example 3:

Calculate the following integral, where D is the region between $y=\frac{x}{2}$ and $y^{2}=x+3$

$$
\iint_{D} x y d x d y
$$

STEP 1: Picture

(To draw this, notice $y^{2}=x+3 \Rightarrow x=y^{2}-3$ and tilt your head)

STEP 2: Inequalities

Here D is a "horizontal" region, so have to do x first:
Note: For horizontal regions, get

$$
\begin{gathered}
\text { Left } \leq x \leq \text { Right } \\
\qquad \begin{array}{c}
y^{2}-3 \leq x \leq 2 y \\
? \leq y \leq ?
\end{array}
\end{gathered}
$$

Points of intersection

$$
\begin{aligned}
2 y & =y^{2}-3 \\
y^{2}-2 y-3 & =0 \\
(y+1)(y-3) & =0 \\
y & =-1,3
\end{aligned}
$$

Inequalities

$$
\begin{array}{r}
y^{2}-3 \leq x \leq 2 y \\
-1 \leq y \leq 3
\end{array}
$$

STEP 3: Integrate

$$
\begin{aligned}
\iint_{D} x y d x d y & =\int_{-1}^{3} \int_{y^{2}-3}^{2 y} x y d x d y \\
& =\int_{-1}^{3}\left[\left(\frac{x^{2}}{2}\right) y\right]_{x=y^{2}-3}^{x=2 y} d y \\
& =\int_{-1}^{3} \frac{(2 y)^{2} y}{2}-\frac{\left(y^{2}-3\right)^{2} y}{2} d y \\
& =\int_{-1}^{3} \frac{\left(4 y^{2}\right) y}{2}-\frac{1}{2}\left(y^{4}-6 y^{2}+9\right) y d y \\
& =\int_{-1}^{3} 2 y^{3}-\frac{y^{5}}{2}+3 y^{3}-\frac{9}{2} y d y \\
& =\int_{-1}^{3} 5 y^{3}-\frac{y^{5}}{2}-\frac{9}{2} y d y
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{5}{4} y^{4}-\frac{y^{6}}{12}-\frac{9 y^{2}}{4}\right]_{-1}^{3} \\
& =\frac{5}{4}\left(3^{4}-(-1)^{4}\right)-\frac{1}{12}\left(3^{6}-(-1)^{6}\right)-\frac{9}{4}\left(3^{2}-(-1)^{2}\right) \\
& =\frac{5}{4} \times 80-\frac{1}{12} \times 728-\frac{9}{4} \times 8 \\
& =100-\frac{182}{3}-18 \\
& =82-\frac{182}{3} \\
& =\frac{246-182}{3} \\
& =\frac{64}{3}
\end{aligned}
$$

3. An Impossible Integral?

Video: Changing Order of Integration

Let's use the idea above to calculate an impossible integral!

Example 4:

Calculate the following integral:

$$
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x
$$

Note: This integral is impossible to evaluate directly, $\operatorname{since} \sin \left(y^{2}\right)$ doesn't have an anti-derivative! Instead, use the following:

Trick: Change the order of x and y

STEP 1: Find D

Here the region is

$$
\begin{aligned}
& x \leq y \leq 1 \\
& 0 \leq x \leq 1
\end{aligned}
$$

Picture:

STEP 2: Write D as a horizontal region

$$
\begin{aligned}
& \text { Left } \leq x \leq \text { Right } \\
& 0 \leq x \leq y \\
& 0 \leq y \leq 1
\end{aligned}
$$

STEP 3: Integrate

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x \\
= & \int_{0}^{1} \int_{0}^{y} \sin \left(y^{2}\right) d x d y \\
= & \int_{0}^{1}\left[\sin \left(y^{2}\right) x\right]_{x=0}^{x=y} d y \\
= & \int_{0}^{1} \sin \left(y^{2}\right) y d y \\
& \left(u=y^{2}, d u=2 y d y \Rightarrow y=\frac{1}{2} d u, u(0)=0, u(1)=1\right) \\
= & \int_{0}^{1} \sin (u)\left(\frac{1}{2} d u\right) \\
= & {\left[-\frac{1}{2} \cos (u)\right]_{0}^{1} } \\
= & \frac{1}{2}-\frac{1}{2} \cos (1)
\end{aligned}
$$

Note: For another fun application of this Fubini trick, check out the following video, sometimes called a Frullani Integral:

Video: Multivariable Integral

