
LECTURE 22: DOMINATED CONVERGENCE

1. Convergence of Series

Recall: Monotone Convergence Theorem: If fn ≥ 0 and fn ↗ f

Then lim
n→∞

∫
fn =

∫
f

As a corollary, let’s prove some useful facts about convergence of series
of functions:

Corollary: Consider a series
∑∞

k=1 ak(x) where ak ≥ 0 is measurable

Then

∫ ∞∑
k=1

ak(x)dx =
∞∑
k=1

∫
ak(x)dx

Proof: Let fn(x) =
∑n

k=1 ak(x) then fn ↗ f where f(x) =:
∑∞

k=1 ak(x)
and so by MCT we get

lim
n→∞

∫
fn =

∫
f

Hence
∞∑
k=1

∫
ak(x)dx

DEF
= lim

n→∞

n∑
k=1

∫
ak(x)dx

FINITE
= lim

n→∞

∫ n∑
k=1

ak(x)dx

DEF
= lim

n→∞

∫
fn =

∫
f

DEF
=

∫ ∞∑
k=1

ak(x)dx �
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Important Corollary: If
∑∞

k=1

∫
ak(x)dx is finite, then

∑∞
k=1 ak(x)

converges for a.e. x

Why? In that case, f(x) =
∑∞

k=1 ak(x) is integrable and hence f(x)
is finite a.e. that is,

∑∞
k=1 ak(x) is finite a.e.

In other words, if you can integrate a series and the result is converges,
then the original series converges for every x. This is a useful way
(especially in physics) to show that a series of functions converges a.e.

2. Level 4: General Case

LEVEL 4: For general f , just write f = f+ − f− where

f+ = max(f(x), 0) and f− = max(−f(x), 0)

Here f± are non-negative functions and so

Definition: ∫
f =:

∫
f+ −

∫
f−

Definition: f is integrable if
∫
|f(x)| dx <∞.

This is equivalent to requiring that f± is integrable.

Note:
∫
f is independent of the decomposition used:

If f = f1−f2 = g1−g2 where the fi and gi are non-negative integrable
functions, then f1 + g2 = g1 + f2 and so from LEVEL 3∫

f1 +

∫
g2 =

∫
g1 +

∫
f2 ⇒

∫
f1 −

∫
f2 =

∫
g1 −

∫
g2

Fact: All the facts discussed before (linearity, additivity, monotonicity,
triangle intequality) are true here as well.
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Note: You can also define the Lebesgue integral for complex-valued
functions: If f(x) = u(x) + i v(x) is complex valued, then∫

f =:

∫
u+ i

∫
v

Moreover, f is integrable if
∫
|f | < ∞, where |f | =

√
u2 + v2 is the

modulus of f

3. Regularity

In order to prepare for the celebrated Dominated Convergence Theo-
rem, let’s prove some regularity properties of integrable functions.

WARNING: If f is integrable, we do NOT have lim|x|→∞ f(x) = 0
(see homework). That said, we do have the following fact:

Fact 1: If f is integrable, then for all ε > 0 there is a ball B such that∫
Bc

|f(x)| dx < ε

So intuitively, integrable functions are small at ∞

Proof: WLOG, assume f ≥ 0, because otherwise replace f with |f |.

Let fn = f 1B(0,n)

Then fn ≥ 0 measurable and fn ↗ f , so by the Monotone Converge
Theorem,

lim
n→∞

∫
fn =

∫
f ⇒ lim

n→∞

∫
f − fn = 0
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Let ε > 0 be given, then by the above there is N large enough so that∫
f − fN < ε

But f − fN = f − f 1B(0,N) = f
(
1− 1B(0,N)

)
= f 1B(0,N)c

Let B = B(0, N) then the above implies that

∫
Bc

f < ε �

Fact 2: If f is integrable, then for all ε > 0 there is δ > 0 such that

If m(E) < δ then

∫
E

|f(x)| dx < ε

This is like the ε− δ definition of continuity, but for measures

Proof: Again, assume f ≥ 0 and let ε > 0 be given.

Let fn =: f 1En
where En = {x | f(x) ≤ n} and notice fn ≤ n

Then fn ≥ 0 measurable and fn ↗ f , so by the Monotone Convergence
Theorem we have limn→∞

∫
f − fn = 0, so there is N > 0 such that

∫
f − fN <

ε

2

Let δ TBA, then if m(E) < δ, then
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∫
E

f =

∫
E

f − fN︸ ︷︷ ︸
≥0

+

∫
E

fN

≤
∫
Rd

f − fN +

∫
E

fN︸︷︷︸
≤N

≤ ε
2

+Nm(E)

<
ε

2
+Nδ

If you choose δ such that Nδ < ε
2 then you get

∫
E f < ε �

4. The Dominated Convergence Theorem

Video: Dominated Convergence Theorem

We are now ready to prove the cornerstone theorem of Lebesgue in-
tegration: the Dominated Convergence Theorem. It can be viewed
as a culmination of our efforts, and is a general statement about the
interchange of limits and integrals.

Dominated Convergence Theorem: Suppose {fn} is a sequence
such that fn → f a.e. and |fn| ≤ g where g is an integrable function

Then lim
n→∞

∫
|fn − f | = 0

Note: It’s like the bounded convergence theorem, except we replace
M with any integrable function g. So if fn is dominated by g where
g (independent of n) is integrable, then we can interchange limits and
integrals.

https://www.youtube.com/watch?v=mUObEZJ5LRw
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Proof: Consider En =: {|x| ≤ n and g(x) ≤ n}.

Given ε > 0 then repeating the proof of Fact 1, there is M such that∫
Ec

M

g < ε

The functions fn 1EM
converge to f on EM , are bounded by M (because

|fn| ≤ g ≤M on EM), and supported on a set of finite measure, so by
the Bounded Convergence Theorem, there is N such that if n > N∫

EM

|fn − f | < ε

With the same N , if n > N we get∫
|fn − f | =

∫
EM

|fn − f |+
∫
Ec

M

|fn − f |︸ ︷︷ ︸
≤2g

≤ε+ 2

∫
Ec

M

g

≤ε+ 2ε = 3ε �

5. The space L1 of integrable functions

The space of integrable functions has a particularly nice structure.

Definition: L1(Rd) = space of integrable functions

Definition: If f is integrable, then the L1 norm of f is

‖f‖ = ‖f‖L1
=:

∫
|f(x)| dx
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You can check that this is a norm in the usual sense. For example we
have ‖f + g‖ ≤ ‖f‖+ ‖g‖

Norms allow us to define the distance between two integrable functions
f and g as

d(f, g) = ‖g − f‖

This then defines a metric on L1, and in fact:

Theorem: [Riesz-Fischer] (L1, d) is complete

This makes Lebesgue integrals drastically different from Riemann in-
tegrals. The space of Riemann integrable functions is incomplete. For
example fn = min(n,− ln(x)) is Cauchy but doesn’t converge.

Proof:

STEP 1: Suppose {fn} is Cauchy in L1, that is ‖fn − fm‖ goes to
0 as m,n → ∞. The plan is to extract a subsequence of {fn} that
converges to some f pointwise and in the norm. This can be achieved
if the convergence is fast enough.

STEP 2: Claim # 1: There is subsequence {fnk} such that∥∥fnk+1
− fnk

∥∥ ≤ 2−k

Proof of Claim: You do this inductively. Suppose you found fnk,
then by Cauchiness with ε = 2−k there is N = N(2−k) such that if
n ≥ N then

‖fn − fnk‖ ≤ 2−k

Then just let nk+1 = N X
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STEP 3: Our function f

Define: f(x) = fn1(x) +
∞∑
k=1

fnk+1
(x)− fnk(x)

And g(x) = |fn1(x)|+
∞∑
k=1

∣∣fnk+1
(x)− fnk(x)

∣∣
∫
g dx =

∫
|fn1|+

∫ ∞∑
k=1

∣∣fnk+1
− fnk

∣∣ dx
=

∫
|fn1|+

∞∑
k=1

∫ ∣∣fnk+1
− fnk

∣∣ dx
≤
∫
|fn1|+

∞∑
k=1

2−k

=

∫
|fn1|+ 1 <∞

(The interchange of series and integrals is justified by the Series Fact
from today)

Hence g is integrable, and since |f | ≤ g, this implies f is integrable.

In particular, the series defining f converges almost everywhere, and
since the partial sums of that series are precisely fnk (telescoping se-
ries), we find that fnk → f a.e. x

STEP 4: Claim # 2: fnk → f in L1

This follows because each partial sum is dominated by g. Therefore,
by the Dominated Convergence Theorem, we get ‖fnk − f‖ → 0
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STEP 5: Claim # 3: fn → f in L1

Just need to use Cauchiness: Given ε > 0 there is N such that for all
m,n > N then ‖fn − fm‖ < ε

2 . If nk (for k large enough) is chosen
such that nk > N and ‖fnk − f‖ < ε

2 (from STEP 4) then if n > N
we have

‖fn − f‖ ≤ ‖fn − fnk‖+ ‖fnk − f‖ <
ε

2
+
ε

2
= ε

Hence fn converges to f in L1 �

In the proof, we have shown the following fact:

Corollary: If fn → f in L1 then there is a subsequence fnk such that
fnk → f a.e.

6. Lp spaces

Similarly you can define Lp with 1 ≤ p <∞ as

Definition: f ∈ Lp if
∫
|f(x)|p <∞ and

‖f‖Lp
=

(∫
|f(x)|p

) 1
p

With a similar proof, you can show that Lp is complete.

The space L2 is particularly noteworthy because it is a Hilbert space,
that is there is an inner product

(f, g) =

∫
f(x)g(x)dx
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Whose norm ‖f‖L2
=
√

(f, f) makes L2 complete

The case p =∞ is defined a bit differently:

Definition: f ∈ L∞ if there is a C such that |f(x)| ≤ C for a.e. x

‖f‖L∞ = inf {C such that |f(x)| ≤ C for a.e. x}
Those are called the essentially bounded functions.

Here L∞ is complete as well, but with a different proof.
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