LECTURE 22: DOMINATED CONVERGENCE

1. CONVERGENCE OF SERIES
Recall: Monotone Convergence Theorem: If f, > 0and f, " f

Then lim [ f, = / f

n—oo

As a corollary, let’s prove some useful facts about convergence of series
of functions:

Corollary: Consider a series >~ ; ap(x) where a; > 0 is measurable

Then /zo;ak(a:)dx = i::/ak(x)dx

Proof: Let f,(z) = > ,_; ar(x) then f,, 7 f where f(x) = >~ ap(z)
and so by MCT we get

i [ fu= [ 1
n—o0
Hence Z/ak(ax)d 7}1_{10102/% ; FINITE JL%/Zak(x)dx
k=1 k=1
n—00
k=1
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Important Corollary: If > 77, [ax(z)dx is finite, then Y2 ai(x)
converges for a.e. x

Why? In that case, f(x) = >, ap(x) is integrable and hence f(z)
is finite a.e. that is, >~ ar(x) is finite a.e.

In other words, if you can integrate a series and the result is converges,
then the original series converges for every x. This is a useful way
(especially in physics) to show that a series of functions converges a.e.

2. LEVEL 4: GENERAL CASE
LEVEL 4: For general f, just write f = f™ — f~ where

[T =max(f(x),0) and f~ = max(—f(z),0)

Here f* are non-negative functions and so

Ji- e[

Definition: f is integrable if [|f(z)|dz < oco.

Definition:

This is equivalent to requiring that f* is integrable.
Note: [ f is independent of the decomposition used:

If f=fi— fo=g1— go where the f; and g; are non-negative integrable
functions, then f; + go = g1 + f2 and so from LEVEL 3

[i fore [+ [ 1= [~ 1= [ [

Fact: All the facts discussed before (linearity, additivity, monotonicity,
triangle intequality) are true here as well.



LECTURE 22: DOMINATED CONVERGENCE 3

Note: You can also define the Lebesgue integral for complex-valued
functions: If f(x) = u(z) + i v(x) is complex valued, then

1= [

Moreover, f is integrable if [|f| < oo, where |f| = vu? 4+ v? is the
modulus of f

3. REGULARITY

In order to prepare for the celebrated Dominated Convergence Theo-
rem, let’s prove some regularity properties of integrable functions.

WARNING: If f is integrable, we do NOT have lim,|_, f(z) = 0
(see homework). That said, we do have the following fact:

Fact 1: If f is integrable, then for all € > 0 there is a ball B such that

|f(x)|dx < €
BC

So intuitively, integrable functions are small at oo
Proof: WLOG, assume f > 0, because otherwise replace f with |f].

Let f, = f 1pon

Then f, > 0 measurable and f,,  f, so by the Monotone Converge
Theorem,

lim fnsz:/ggo/f—fn:o
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Let € > 0 be given, then by the above there is NV large enough so that

/f—fN<6

But f— fv=/f—f1lpon =/F(1—1pon) = f Llpony:

Let B = B(0, N) then the above implies that

f<e O
BC

Fact 2: If f is integrable, then for all € > 0 there is § > 0 such that
If m(E) < ¢ then / |f(x)| de < €
E

This is like the € — ¢ definition of continuity, but for measures
Proof: Again, assume f > 0 and let € > 0 be given.
Let f, =: f 1p, where E,, = {z| f(z) < n} and notice f, <n

Then f,, > 0 measurable and f,,  f, so by the Monotone Convergence
Theorem we have lim, o [ f — f, = 0, so there is N > 0 such that

/f_fN<§

Let 0 TBA, then if m(E) < 9, then
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f=1Jf—/n+ ] In

E E—>r— JE
< —
< Rdf Iy + . IN
<N
<5+ Nm(E)
€
<=4+ No
5 +
If you choose ¢ such that N9 < § then you get fE f<e L]

4. THE DOMINATED CONVERGENCE THEOREM

Video: Dominated Convergence Theorem

We are now ready to prove the cornerstone theorem of Lebesgue in-
tegration: the Dominated Convergence Theorem. It can be viewed
as a culmination of our efforts, and is a general statement about the
interchange of limits and integrals.

Dominated Convergence Theorem: Suppose {f,} is a sequence
such that f, — f a.e. and |f,| < g where g is an integrable function

n—oo

Then lim/\fn—f\:()

Note: It’s like the bounded convergence theorem, except we replace
M with any integrable function g. So if f, is dominated by g where
g (independent of n) is integrable, then we can interchange limits and
integrals.


https://www.youtube.com/watch?v=mUObEZJ5LRw
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Proof: Consider E,, =: {|z| < n and g(z) < n}.

Given € > 0 then repeating the proof of Fact 1, there is M such that

/ g <e
E

M
The functions f, 1g,, converge to f on E);, are bounded by M (because

|ful < g < M on Ey), and supported on a set of finite measure, so by
the Bounded Convergence Theorem, there is N such that if n > N

/EM\fn—f!<€

With the same N, if n > N we get

/Ifn—flszlen—flJr/%M

<2g
§e+2/ g
E

c
M

<e+2e=3 U

5. THE SPACE L' OF INTEGRABLE FUNCTIONS
The space of integrable functions has a particularly nice structure.

Definition: L!(R?) = space of integrable functions

Definition: If f is integrable, then the L' norm of f is

1= 1F1, = / ()| de
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You can check that this is a norm in the usual sense. For example we
have || +g[ < 7l + |l

Norms allow us to define the distance between two integrable functions
f and g as

d(f,g) =llg — f|

This then defines a metric on L', and in fact:
Theorem: [Riesz-Fischer| (L', d) is complete

This makes Lebesgue integrals drastically different from Riemann in-
tegrals. The space of Riemann integrable functions is incomplete. For
example f,, = min(n, —In(z)) is Cauchy but doesn’t converge.

Proof:

STEP 1: Suppose {f,} is Cauchy in L!, that is ||f, — f| goes to
0 as m,n — oo. The plan is to extract a subsequence of {f,} that
converges to some f pointwise and in the norm. This can be achieved
if the convergence is fast enough.

STEP 2: Claim # 1: There is subsequence {f,, } such that

ank+1 o fnk” < 27"

Proof of Claim: You do this inductively. Suppose you found f,,,
then by Cauchiness with € = 27% there is N = N(27%) such that if
n > N then

1 fo = fall <27
Then just let np,1 =N vV
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STEP 3: Our function f

Define: f(z) = fu,(z) + an,m — fu ()

And g( |fn1 ‘+Z{fnk+1 f”k< )‘

/gdx:/umw/;}fnkﬂ_fnk‘dx

=/|fn1\+;/}fnk+l = ol dr

S/ImeZ?_k
k=1
:/|fn1‘ +1 < &)

(The interchange of series and integrals is justified by the Series Fact
from today)

Hence g is integrable, and since | f| < g, this implies f is integrable.
In particular, the series defining f converges almost everywhere, and
since the partial sums of that series are precisely f,, (telescoping se-
ries), we find that f,, — f a.e. z

STEP 4: Claim # 2: f,, — fin L'

This follows because each partial sum is dominated by ¢g. Therefore,
by the Dominated Convergence Theorem, we get || f,, — f|| = 0
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STEP 5: Claim # 3: f, — f in L'

Just need to use Cauchiness: Given € > 0 there is N such that for all
€

m,n > N then | f, — full < §. If n (for k£ large enough) is chosen

such that n, > N and ||f,, — f|| < § (from STEP 4) then if n > N
we have

€

2

€
o= £ < o= Ful 1y = £l < 5+ 5 =
Hence f,, converges to f in L' ]

In the proof, we have shown the following fact:

Corollary: If f, — f in L! then there is a subsequence f,, such that
fn, = [ ace.

6. L SPACES
Similarly you can define L” with 1 < p < o0 as

Definition: f € LP if [|f(z)" < co and

i, = ([ vew)

With a similar proof, you can show that L? is complete.

The space L? is particularly noteworthy because it is a Hilbert space,
that is there is an inner product

(f.9) = / f(x)g(2)dz
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Whose norm || ||, = +/(f, f) makes L* complete

The case p = oo is defined a bit differently:
Definition: f € L™ if there is a C such that |f(z)| < C for a.e. x

| fll 7o = inf {C such that |f(z)| < C for a.e. z}

Those are called the essentially bounded functions.

Here L™ is complete as well, but with a different proof.
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