LECTURE 23: L'HÔPITAL'S RULE

Today: We'll prove the most addictive theorem: L'Hôpital's Rule.

1. L'Hôpital's Rule

Video: Proof of L'Hôpital's Rule
Intuitively, it just says that:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Here we will prove the $\frac{0}{0}$ case

L'Hôpital's Rule

Suppose f and g are differentiable with

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

Moreover, suppose

$$
\begin{gathered}
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \\
\text { Then: } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L
\end{gathered}
$$

Date: Tuesday, November 16, 2021.

Note: All those assumptions are important, and in fact there are counterexamples if some of them don't hold (see HW)

To simplify the proof, assume $g(x) \neq 0$ and $g^{\prime}(x) \neq 0$

Proof:

STEP 1: GOAL
Let $\epsilon>0$ be given.
We want to find $\delta>0$ such that if $0<|x-a|<\delta$, then $\left|\frac{f(x)}{g(x)}-L\right|<\epsilon$

STEP 2:

Fix x
Let t be TBA (More variables $=$ More freedom in our proof)
Intuitively, if $f(t)$ and $g(t)$ are small, then:

$$
\frac{f(x)}{g(x)} \approx \frac{\frac{f(x)-f(t)}{x-t}}{\frac{g(x)-g(t)}{x-t}}=\frac{f(x)-f(t)}{g(x)-g(t)}
$$

Trick:

$$
\begin{aligned}
\left|\frac{f(x)}{g(x)}-L\right| & =\left|\frac{f(x)}{g(x)}-\left(\frac{f(x)-f(t)}{g(x)-g(t)}\right)+\left(\frac{f(x)-f(t)}{g(x)-g(t)}\right)-L\right| \\
& \leq \underbrace{\left|\frac{f(x)}{g(x)}-\left(\frac{f(x)-f(t)}{g(x)-g(t)}\right)\right|}_{A}+\underbrace{\left|\left(\frac{f(x)-f(t)}{g(x)-g(t)}\right)-L\right|}_{B}
\end{aligned}
$$

We want to show this is $<\epsilon$, so let's study each piece separately.

STEP 3: Study of A

$$
\begin{aligned}
A & =\left|\frac{f(x)}{g(x)}-\left(\frac{f(x)-f(t)}{g(x)-g(t)}\right)\right| \\
& =\frac{|f(x)(g(x)-g(t))-(f(x)-f(t)) g(x)|}{|g(x)(g(x)-g(t))|} \\
& =\frac{|f(x) g(x)-f(x) g(t)-g(x) f(x)+g(x) f(t)|}{|g(x)||g(x)-g(t)|} \\
& =\frac{|-f(x) g(t)+g(x) f(t)|}{|g(x)||g(x)-g(t)|} \quad \text { (Triangle Inequality) } \\
& \leq \frac{|f(x)||g(t)|+|g(x)||f(t)|}{|g(x)||g(x)-g(t)|} \quad \text { (Looks like FOIL) } \\
& \leq \frac{|f(x)||f(t)|+|f(x)||g(t)|+|g(x)||f(t)|+|g(x)||g(t)|}{|g(x)||g(x)-g(t)|} \\
& =\frac{(|f(x)|+|g(x)|)(|f(t)|+|g(t)|)}{|g(x)||g(x)-g(t)|} \\
& =\left(\frac{|f(x)|+|g(x)|}{|g(x)||g(x)-g(t)|}\right) \underbrace{(|f(t)|+|g(t)|)}_{\text {Good }}
\end{aligned}
$$

Notice that the $|f(t)|+|g(t)|$ term is good/small, since $f(t), g(t) \rightarrow 0$
The idea now is to choose t that cancels the numerator $|f(x)|+|g(x)|$ and the denominator $|g(x)|$:

What is t ? Given x, let t be such that $a<t<x$ and

> (1) $|f(t)|+|g(t)|<\left(\frac{|g(x)|^{2}}{4(|f(x)|+|g(x)|)}\right) \epsilon$
> (2) TBA

We can do that since x is fixed and $|f(t)|+|g(t)| \rightarrow 0$

(t is like an advance guard for x, protects x from a)
So by (1) and our estimate of A, we get:

$$
A \leq\left(\frac{|f(x)|+|g(x)|}{|g(x)||g(x)-g(t)|}\right)\left(\frac{|g(x)|^{2}}{4(|f(x)|+|g(x)|)}\right) \epsilon=\frac{\epsilon}{4}\left(\frac{|g(x)|}{|g(x)-g(t)|}\right)
$$

To estimate $|g(x)-g(t)|$ we need to use the reverse triangle inequality, so assume that

$$
\text { (2) }|g(t)|<\frac{|g(x)|}{2}
$$

Then: $|g(x)-g(t)| \geq||g(x)|-|g(t)|| \geq|g(x)|-|g(t)| \stackrel{(2)}{\stackrel{2}{2}}|g(x)|-\frac{|g(x)|}{2}=\frac{|g(x)|}{2}$

Therefore: $A \leq \frac{\epsilon}{4}\left(\frac{|g(x)|}{|g(x)-g(t)|}\right)<\frac{\epsilon}{4}|g(x)| \frac{2}{|g(x)|}=\frac{\epsilon}{2}$

STEP 4: Study of B

$$
\text { Recall: } B=\left|\frac{f(x)-f(t)}{g(x)-g(t)}-L\right|
$$

Idea: By the Mean-Value Theorem, for some c and d

$$
\frac{f(x)-f(t)}{g(x)-g(t)}=\frac{(f(x)-f(t)) /(x-t)}{(g(x)-g(t)) /(x-t)}=\frac{f^{\prime}(c)}{g^{\prime}(d)}
$$

Here c and d are NOT necessarily equal. That said, IF $c=d$, then:

$$
\frac{f(x)-f(t)}{g(x)-g(t)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \rightarrow L \quad \text { as } c \rightarrow a
$$

Which would imply that $B=\left|\frac{f(x)-f(t)}{g(x)-g(t)}-L\right|$ is small.
To fix this, we need a new and improved version of the MVT called:

Ratio MVT

There exists c in (x, t) such that:

$$
\frac{f(x)-f(t)}{g(x)-g(t)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

(The proof is in the appendix)
Note: If $g(x)=x$, then we get:

$$
\frac{f(x)-f(t)}{x-t}=f^{\prime}(c) \text { which is the MVT }
$$

In this case, using the ratio MVT, we get:

Since $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ (we never used this), there is $\delta>0$ such that for all x, if $0<|x-a|<\delta$, then $\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\frac{\epsilon}{2}$

But since $|c-a|<|x-a|<\delta$, we can use the above with c instead of x to conclude that:

$$
\Rightarrow B=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}-L\right|<\frac{\epsilon}{2}
$$

STEP 5: Grand Finale!

With that $\delta>0$, if $|x-a|<\delta$, we then get

$$
\left|\frac{f(x)}{g(x)}-L\right| \leq A+B<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Remarks:

(1) The proof of the $\frac{\infty}{\infty}$ case is similar to this one, except that we have an advance guard $a<x<t$ instead of a rear guard.
(2) The proof of the case $x \rightarrow \infty$ follows from this one simply by letting $h=\frac{1}{x} \rightarrow 0^{+}$and therefore:
$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{h \rightarrow 0^{+}} \frac{f\left(\frac{1}{h}\right)}{g\left(\frac{1}{h}\right)} \stackrel{\hat{H}}{=} \lim _{h \rightarrow 0^{+}} \frac{f^{\prime}\left(\frac{1}{h}\right)\left(-\frac{1}{h^{2}}\right)}{g\left(\frac{1}{h}\right)\left(-\frac{1}{h^{2}}\right)}=\lim _{h \rightarrow 0^{+}} \frac{f^{\prime}\left(\frac{1}{h}\right)}{g^{\prime}\left(\frac{1}{h}\right)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

2. The Inverse Function Theorem

Finally, let's find the derivative of f^{-1}
This allows us to find the derivatives of $\ln (x), \sqrt{x}, \tan ^{-1}(x)$, etc.

Motivation: Suppose $f(x)=y$, so $x=f^{-1}(y)$. Start with $f\left(f^{-1}(y)\right)=$ y and differentiate both sides:

$$
\begin{aligned}
{\left[f\left(f^{-1}(y)\right)\right]^{\prime} } & =(y)^{\prime} \\
f^{\prime}\left(f^{-1}(y)\right)\left(f^{-1}(y)\right)^{\prime} & =1 \\
\left(f^{-1}(y)\right)^{\prime} & =\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} \\
\left(f^{-1}(y)\right)^{\prime} & =\frac{1}{f^{\prime}(x)}
\end{aligned}
$$

This motivates the following theorem:

Inverse Function Theorem

Suppose f is one-to-one and differentiable at x_{0}. If $f^{\prime}\left(x_{0}\right) \neq 0$, then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and

$$
\left(f^{-1}\left(y_{0}\right)\right)^{\prime}=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Example 1:

Let $f(x)=\tan (x)$, then $f^{-1}(y)=\tan ^{-1}(y)$, and the above theorem says

$$
\left(\tan ^{-1}(y)\right)^{\prime}=\frac{1}{(\tan)^{\prime}(x)}=\frac{1}{\sec ^{2}(x)}=\frac{1}{1+\tan ^{2}(x)}=\frac{1}{1+\tan ^{2}\left(\tan ^{-1}(y)\right)}=\frac{1}{1+y^{2}}
$$

Hence $\left(\tan ^{-1}(x)\right)^{\prime}=\frac{1}{1+x^{2}}$

Example 2:

Let $f(x)=x^{2}$, then $f^{-1}(y)=\sqrt{y}$, and the above theorem says

$$
(\sqrt{y})^{\prime}=\frac{1}{\left(x^{2}\right)^{\prime}}=\frac{1}{2 x}=\frac{1}{2 \sqrt{y}} \Rightarrow(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}
$$

Inverse Function Theorem Proof:

STEP 1: By definition we have

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)
$$

By taking reciprocals, which is valid since $f^{\prime}\left(x_{0}\right) \neq 0$ and $f(x) \neq f\left(x_{0}\right)$ (f is one-to-one), we get:

$$
\lim _{x \rightarrow x_{0}} \frac{x-x_{0}}{f(x)-f\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

STEP 2: Let $\epsilon>0$ be given, then the above limit says: there is $\delta^{\prime}>0$ such that if $0<\left|x-x_{0}\right|<\delta^{\prime}$, then

$$
\left|\frac{x-x_{0}}{f(x)-f\left(x_{0}\right)}-\frac{1}{f^{\prime}\left(x_{0}\right)}\right|<\epsilon
$$

But f^{-1} is continuous at $y_{0}=f\left(x_{0}\right)$, so by definition of continuity (with δ^{\prime} instead of ϵ), there is $\delta>0$ such that if $0<\left|y-y_{0}\right|<\delta$, then

$$
|\underbrace{f^{-1}(y)}_{x}-\underbrace{f^{-1}\left(y_{0}\right)}_{x_{0}}|<\delta^{\prime} \Rightarrow\left|x-x_{0}\right|<\delta^{\prime}
$$

STEP 3: But then, if $0<\left|y-y_{0}\right|<\delta$, we get $\left|x-x_{0}\right|<\delta^{\prime}$ and so

$$
\begin{aligned}
&\left|\frac{x-x_{0}}{f(x)-f\left(x_{0}\right)}-\frac{1}{f^{\prime}\left(x_{0}\right)}\right|<\epsilon \\
&\left|\frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}}-\frac{1}{f^{\prime}\left(x_{0}\right)}\right|<\epsilon
\end{aligned}
$$

This shows that

$$
\lim _{y \rightarrow y_{0}} \frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}}=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

That is: $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}$
Cultural Note: There is also something called the Implicit Function Theorem, which allows you to differentiate functions that are defined implicitly, like $x^{3} y+y^{2} x=2$

3. Appendix: Proof of Ratio MVT

Ratio MVT

There exists c in (x, t) such that:

$$
\frac{f(x)-f(t)}{g(x)-g(t)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Proof: Define

$$
h(s)=(f(x)-f(t))(g(s)-g(x))-(g(x)-g(t))(f(s)-f(x))
$$

Then:

$$
\begin{aligned}
h(x) & =(f(x)-f(t))(g(x)-g(x))-(g(x)-g(t))(f(x)-f(x))=0 \\
h(t) & =(f(x)-f(t))(g(t)-g(x))-(g(x)-g(t))(f(t)-f(x))=0
\end{aligned}
$$

So by Rolle's there is c in (x, t) such that $h^{\prime}(c)=0$. However

$$
\begin{aligned}
h^{\prime}(s) & =(f(x)-f(t)) g^{\prime}(s)-(g(x)-g(t)) f^{\prime}(s) \\
\Rightarrow h^{\prime}(c) & =(f(x)-f(t)) g^{\prime}(c)-(g(x)-g(t)) f^{\prime}(c)=0 \\
& \Rightarrow(f(x)-f(t)) g^{\prime}(c)=(g(x)-g(t)) f^{\prime}(c) \\
& \Rightarrow \frac{f(x)-f(t)}{g(x)-g(t)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
\end{aligned}
$$

