
LECTURE 23: L’HÔPITAL’S RULE

Today: We’ll prove the most addictive theorem: L’Hôpital’s Rule.

1. L’Hôpital’s Rule

Video: Proof of L’Hôpital’s Rule

Intuitively, it just says that:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Here we will prove the 0
0 case

L’Hôpital’s Rule

Suppose f and g are differentiable with

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

Moreover, suppose

lim
x→a

f ′(x)

g′(x)
= L

Then: lim
x→a

f(x)

g(x)
= L

Date: Tuesday, November 16, 2021.
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https://www.youtube.com/watch?v=tL13JxmyRLw


2 LECTURE 23: L’HÔPITAL’S RULE

Note: All those assumptions are important, and in fact there are
counterexamples if some of them don’t hold (see HW)

To simplify the proof, assume g(x) ̸= 0 and g′(x) ̸= 0

Proof:
STEP 1: Goal

Let ϵ > 0 be given.

We want to find δ > 0 such that if 0 < |x− a| < δ, then
∣∣∣f(x)g(x) − L

∣∣∣ < ϵ

STEP 2:

Fix x

Let t be TBA (More variables = More freedom in our proof)

Intuitively, if f(t) and g(t) are small, then:

f(x)

g(x)
≈

f(x)−f(t)
x−t

g(x)−g(t)
x−t

=
f(x)− f(t)

g(x)− g(t)

Trick:

∣∣∣∣f(x)g(x)
− L

∣∣∣∣ = ∣∣∣∣f(x)g(x)
−
(
f(x)− f(t)

g(x)− g(t)

)
+

(
f(x)− f(t)

g(x)− g(t)

)
− L

∣∣∣∣
≤
∣∣∣∣f(x)g(x)

−
(
f(x)− f(t)

g(x)− g(t)

)∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣(f(x)− f(t)

g(x)− g(t)

)
− L

∣∣∣∣︸ ︷︷ ︸
B

We want to show this is < ϵ, so let’s study each piece separately.
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STEP 3: Study of A

A =

∣∣∣∣f(x)g(x)
−
(
f(x)− f(t)

g(x)− g(t)

)∣∣∣∣
=
|f(x)(g(x)− g(t))− (f(x)− f(t))g(x)|

|g(x)(g(x)− g(t))|

=
|������f(x)g(x)− f(x)g(t)−������g(x)f(x) + g(x)f(t)|

|g(x)| |g(x)− g(t)|

=
|−f(x)g(t) + g(x)f(t)|
|g(x)| |g(x)− g(t)|

(Triangle Inequality)

≤|f(x)| |g(t)|+ |g(x)| |f(t)|
|g(x)| |g(x)− g(t)|

(Looks like FOIL)

≤|f(x)| |f(t)|+ |f(x)| |g(t)|+ |g(x)| |f(t)|+ |g(x)| |g(t)|
|g(x)| |g(x)− g(t)|

=
(|f(x)|+ |g(x)|) (|f(t)|+ |g(t)|)

|g(x)| |g(x)− g(t)|

=

(
|f(x)|+ |g(x)|

|g(x)| |g(x)− g(t)|

)
(|f(t)|+ |g(t)|)︸ ︷︷ ︸

Good

Notice that the |f(t)|+ |g(t)| term is good/small, since f(t), g(t) → 0

The idea now is to choose t that cancels the numerator |f(x)|+ |g(x)|
and the denominator |g(x)|:

What is t? Given x, let t be such that a < t < x and
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(1) |f(t)|+ |g(t)| <

(
|g(x)|2

4 (|f(x)|+ |g(x)|)

)
ϵ

(2) TBA

We can do that since x is fixed and |f(t)|+ |g(t)| → 0

(t is like an advance guard for x, protects x from a)

So by (1) and our estimate of A, we get:

A ≤
(

(((((((((|f(x)|+ |g(x)|

��
��|g(x)| |g(x)− g(t)|

)(
|g(x)|�2

4 ((((((((((|f(x)|+ |g(x)|)

)
ϵ =

ϵ

4

(
|g(x)|

|g(x)− g(t)|

)
To estimate |g(x)− g(t)| we need to use the reverse triangle inequality,
so assume that

(2) |g(t)| < |g(x)|
2

Then: |g(x)− g(t)| ≥ ||g(x)| − |g(t)|| ≥ |g(x)|−|g(t)|
(2)
> |g(x)|−|g(x)|

2
=

|g(x)|
2
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Therefore: A ≤ ϵ

4

(
|g(x)|

|g(x)− g(t)|

)
<

ϵ

4�
���|g(x)| 2

�
���|g(x)|

=
ϵ

2

STEP 4: Study of B

Recall: B =

∣∣∣∣f(x)− f(t)

g(x)− g(t)
− L

∣∣∣∣
Idea: By the Mean-Value Theorem, for some c and d

f(x)− f(t)

g(x)− g(t)
=

(f(x)− f(t))/(x− t)

(g(x)− g(t))/(x− t)
=

f ′(c)

g′(d)

Here c and d are NOT necessarily equal. That said, IF c = d, then:

f(x)− f(t)

g(x)− g(t)
=

f ′(c)

g′(c)
→ L as c → a

Which would imply that B =
∣∣∣f(x)−f(t)
g(x)−g(t) − L

∣∣∣ is small.

To fix this, we need a new and improved version of the MVT called:

Ratio MVT

There exists c in (x, t) such that:

f(x)− f(t)

g(x)− g(t)
=

f ′(c)

g′(c)

(The proof is in the appendix)

Note: If g(x) = x, then we get:

f(x)− f(t)

x− t
= f ′(c) which is the MVT
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In this case, using the ratio MVT, we get:

B =

∣∣∣∣f(x)− f(t)

g(x)− g(t)
− L

∣∣∣∣ = ∣∣∣∣f ′(c)

g′(c)
− L

∣∣∣∣

Since limx→a
f ′(x)
g′(x) = L (we never used this), there is δ > 0 such that

for all x, if 0 < |x− a| < δ, then
∣∣∣f ′(x)
g′(x) − L

∣∣∣ < ϵ
2

But since |c− a| < |x− a| < δ, we can use the above with c instead of
x to conclude that:

⇒ B =

∣∣∣∣f ′(c)

g′(c)
− L

∣∣∣∣ < ϵ

2

STEP 5: Grand Finale!

With that δ > 0, if |x− a| < δ, we then get∣∣∣∣f(x)g(x)
− L

∣∣∣∣ ≤ A+B <
ϵ

2
+

ϵ

2
= ϵ □
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Remarks:

(1) The proof of the ∞
∞ case is similar to this one, except that we

have an advance guard a < x < t instead of a rear guard.

(2) The proof of the case x → ∞ follows from this one simply by
letting h = 1

x → 0+ and therefore:

lim
x→∞

f(x)

g(x)
= lim

h→0+

f
(
1
h

)
g
(
1
h

) Ĥ
= lim

h→0+

f ′ ( 1
h

) (
− 1

h2

)
g
(
1
h

) (
− 1

h2

) = lim
h→0+

f ′ ( 1
h

)
g′
(
1
h

) = lim
x→∞

f ′(x)

g′(x)

2. The Inverse Function Theorem

Finally, let’s find the derivative of f−1

This allows us to find the derivatives of ln(x),
√
x, tan−1(x), etc.
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Motivation: Suppose f(x) = y, so x = f−1(y). Start with f
(
f−1(y)

)
=

y and differentiate both sides:

[
f
(
f−1(y)

)]′
=(y)′

f ′ (f−1(y)
) (

f−1(y)
)′
=1(

f−1(y)
)′
=

1

f ′ (f−1(y))(
f−1(y)

)′
=

1

f ′ (x)

This motivates the following theorem:

Inverse Function Theorem

Suppose f is one-to-one and differentiable at x0. If f ′(x0) ̸= 0,
then f−1 is differentiable at y0 = f(x0) and(

f−1(y0)
)′
=

1

f ′ (x0)

Example 1:

Let f(x) = tan(x), then f−1(y) = tan−1(y), and the above theo-
rem says

(
tan−1(y)

)′
=

1

(tan)′ (x)
=

1

sec2(x)
=

1

1 + tan2(x)
=

1

1 + tan2(tan−1(y))
=

1

1 + y2

Hence
(
tan−1(x)

)′
= 1

1+x2
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Example 2:

Let f(x) = x2, then f−1(y) =
√
y, and the above theorem says

(
√
y)′ =

1

(x2)′
=

1

2x
=

1

2
√
y
⇒
(√

x
)′
=

1

2
√
x

Inverse Function Theorem Proof:

STEP 1: By definition we have

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

By taking reciprocals, which is valid since f ′(x0) ̸= 0 and f(x) ̸= f(x0)
(f is one-to-one), we get:

lim
x→x0

x− x0
f(x)− f(x0)

=
1

f ′(x0)

STEP 2: Let ϵ > 0 be given, then the above limit says: there is δ′ > 0
such that if 0 < |x− x0| < δ′, then∣∣∣∣ x− x0

f(x)− f(x0)
− 1

f ′(x0)

∣∣∣∣ < ϵ

But f−1 is continuous at y0 = f(x0), so by definition of continuity
(with δ′ instead of ϵ), there is δ > 0 such that if 0 < |y − y0| < δ, then∣∣∣∣∣∣f−1(y)︸ ︷︷ ︸

x

− f−1(y0)︸ ︷︷ ︸
x0

∣∣∣∣∣∣ < δ′ ⇒ |x− x0| < δ′

STEP 3: But then, if 0 < |y − y0| < δ, we get |x− x0| < δ′ and so
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∣∣∣∣ x− x0
f(x)− f(x0)

− 1

f ′(x0)

∣∣∣∣ <ϵ∣∣∣∣f−1(y)− f−1(y0)

y − y0
− 1

f ′(x0)

∣∣∣∣ <ϵ

This shows that

lim
y→y0

f−1(y)− f−1(y0)

y − y0
=

1

f ′(x0)

That is:
(
f−1
)′
(y0) =

1

f ′(x0)
□

Cultural Note: There is also something called the Implicit Function
Theorem, which allows you to differentiate functions that are defined
implicitly, like x3y + y2x = 2

3. Appendix: Proof of Ratio MVT

Ratio MVT

There exists c in (x, t) such that:

f(x)− f(t)

g(x)− g(t)
=

f ′(c)

g′(c)

Proof: Define

h(s) = (f(x)− f(t)) (g(s)− g(x))− (g(x)− g(t)) (f(s)− f(x))

Then:

h(x) = (f(x)− f(t)) (g(x)− g(x))− (g(x)− g(t)) (f(x)− f(x)) = 0

h(t) = (f(x)− f(t)) (g(t)− g(x))− (g(x)− g(t)) (f(t)− f(x)) = 0
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So by Rolle’s there is c in (x, t) such that h′(c) = 0. However

h′(s) = (f(x)− f(t)) g′(s)− (g(x)− g(t)) f ′(s)

⇒ h′(c) = (f(x)− f(t)) g′(c)− (g(x)− g(t)) f ′(c) = 0

⇒ (f(x)− f(t)) g′(c) = (g(x)− g(t)) f ′(c)

⇒f(x)− f(t)

g(x)− g(t)
=

f ′(c)

g′(c)
□
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