LECTURE 23: DOUBLE INTEGRALS (III)

1. Volumes

Finally, let's discuss some useful properties of double integrals. This first one should be familiar:

Interpretation:

$\iint_{D} f(x, y) d x d y$ is the volume under the graph of f and over D
Use this to your advantage when calculating hard integrals:

Example 1:

Calculate the following integral, where D is the disk $x^{2}+y^{2} \leq 4$

$$
\iint_{D} \sqrt{4-x^{2}-y^{2}} d x d y
$$

$$
z=\sqrt{4-x^{2}-y^{2}} \Rightarrow z^{2}=4-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}+z^{2}=4 \text { and } z \geq 0
$$

Hence $\sqrt{4-x^{2}-y^{2}}$ represents the upper hemisphere

Date: Wednesday, October 20, 2021.

$\iint_{D} \sqrt{4-x^{2}-y^{2}} d x d y=$ Vol of upper-hemisphere $=\frac{1}{2}\left(\frac{4}{3} \pi(2)^{3}\right)=\frac{16}{3} \pi$

Example 2:

Evaluate the following integral:

$$
\int_{-2}^{1} \int_{-3}^{3} \sqrt{9-x^{2}} d x d y
$$

$$
z=\sqrt{9-x^{2}} \Rightarrow x^{2}+z^{2}=9 \text { and } z \geq 0 \Rightarrow \text { Upper cylinder in } y \text { direction }
$$

$z=\sqrt{9-x^{2}}$

y

$-2 \quad 1$

$$
\int_{-2}^{1} \int_{-3}^{3} \sqrt{9-x^{2}} d x d y=\frac{1}{2} \pi(3)^{2}(1-(-2))=\frac{27}{2} \pi
$$

Physical Application:

If $f(x, y)$ is the density of a metal plate D, then $\iint_{D} f(x, y) d x d y$ gives you the mass of D

2. Average Value

Recall:

The average value of $f(x)$ over $[a, b]$ is

$$
\frac{\int_{a}^{b} f(x) d x}{b-a}=\frac{\int_{a}^{b} f(x) d x}{\text { Length of }[a, b]}
$$

Definition:

The average value of $f(x, y)$ over D is

$$
\frac{\iint_{D} f(x, y) d x d y}{\text { Area of } \mathrm{D}}
$$

Example 3:

Find the average value of $f(x, y)=\sqrt{4-x^{2}-y^{2}}$ over the disk $D: x^{2}+y^{2} \leq 4$

$$
\iint_{D} f(x, y) d x d y=\iint_{D} \sqrt{4-x^{2}-y^{2}} d x d y=\frac{16}{3} \pi \text { (see Example above) }
$$

Area of $D=\pi(2)^{2}=4 \pi$
Therefore the average value is

$$
\frac{\frac{16}{3} \pi}{4 \pi}=\frac{16}{4(3)}=\frac{4}{3}
$$

3. Review: Riemann Sums

Now that we know how to evaluate double integrals, let's go back and actually define what a double integral is.

Let's first review Riemann sums from single-variable calculus:

Example 4:

Estimate the area under $f(x)=x^{2}+2$ from 1 to 7
(a) Using $n=3$ rectangles and right endpoints
(b) Using $n=3$ and midpoints

(a) First find the width:

$$
\Delta x=\frac{7-1}{n}=\frac{6}{3}=2
$$

Consider the rectangle with height f (Right). The sum of the areas becomes:

$$
R_{3}=(\Delta x)(f(3)+f(5)+f(7))=2(11+27+51)=178
$$

(b) Now we take the rectangles with height f (Midpoint)

$$
M_{3}=2(f(2)+f(4)+f(6))=124
$$

4. Riemann Sums in 2 Dimensions

In two dimensions, it's the same thing, except rectangles become boxes

Example 5:

Estimate the volume under $f(x, y)=x^{2}+y^{2}+2$ on $[3,11] \times[1,7]$
(a) Using $m=2$ and $n=3$ and upper right points
(b) Using $m=2$ and $n=3$ and midpoints

(a) This time we would like to approximate the volume with boxes, so first sub-divide the rectangle $[3,11] \times[1,7]$ into sub-rectangles:

Width:

$$
\begin{aligned}
& \Delta x=\frac{11-3}{m}=\frac{8}{2}=4 \\
& \Delta y=\frac{7-1}{n}=\frac{6}{3}=2
\end{aligned}
$$

There are 6 rectangles in total, and on each rectangle, consider the box with height f (Upper Right Point), and we get

$$
\begin{aligned}
R_{2,3} & =\underbrace{(\Delta x)}_{4} \underbrace{(\Delta y)}_{2}(f(7,3)+f(7,5)+f(7,7)+f(11,3)+f(11,5)+f(11,7)) \\
& =8 \times 688 \\
& =5504
\end{aligned}
$$

(Notice this is a double sum, sometimes abbreviated as $\sum \sum$)
(b) Same but this time you choose f (Midpoint) and get

$$
M_{2,3}=8(f(5,2)+f(5,4)+f(5,6)+f(9,2)+f(9,4)+f(9,6))=3536
$$

Note: A double integral is just that, but you let m and n go to ∞.

Note: The picture above is taken from this website.

5. Other Properties

Finally, here are some other miscellaneous properties that double integrals enjoy:
(1) Areas:

Recall:

$$
\int_{a}^{b} 1 d x=b-a=\text { Length of }[a, b]
$$

Areas:

$$
\iint_{D} 1 d x d y=\text { Area of } D
$$

(2) Linearity

Linearity:

$$
\begin{aligned}
\iint f+g & =\iint f+\iint g \\
\iint c f & =c \iint f(c \text { is a constant })
\end{aligned}
$$

In particular, we get

$$
\iint_{D} c=c \iint_{D} 1=c \text { Area of }(D)
$$

(3) Splitting Regions:

Splitting:

If D is made out of 2 pieces D_{1} and D_{2} as in the picture below, then

$$
\iint_{D} f=\iint_{D_{1}} f+\iint_{D_{2}} f
$$

(4) Comparison Property

Comparison:

$$
f \leq g \Rightarrow \iint_{D} f \leq \iint_{D} g
$$

(This is basically saying that integrating doesn't change the order)
In particular, we get the following fact:

$$
f \geq 0 \Rightarrow \iint_{D} f \geq 0
$$

So for example, if on the homework or exams you find that

$$
\iint_{D} \sqrt{4-x^{2}-y^{2}} d x d y=-1
$$

You definitely made a mistake since that integral should be positive!
Moreover, we obtain that:

$$
f \leq g \leq h \Rightarrow \iint_{D} f \leq \iint_{D} g \leq \iint_{D} h
$$

So integration preserves the order. The following problem is a nice illustration of this:

Example 6: (extra practice)

Estimate the following integral, where D is the disk $x^{2}+y^{2} \leq 9$:

$$
\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

Start with:

$$
\begin{aligned}
0 \leq x^{2}+y^{2} & \leq 9 \\
-9 \leq-\left(x^{2}+y^{2}\right) & \leq 0 \\
e^{-9} \leq e^{-\left(x^{2}+y^{2}\right)} \leq e^{0} & =1 \\
\iint_{D} e^{-9} d x d y \leq \iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y & \leq \iint_{D} 1 d x d y
\end{aligned}
$$

However:

$$
\begin{aligned}
\iint_{D} 1 d x d y & =\text { Area of } D=\pi\left(3^{2}\right)=9 \pi \\
\iint_{D} e^{-9} d x d y & =e^{-9}(\text { Area of } D)=e^{-9}(9 \pi)=\frac{9 \pi}{e^{9}}
\end{aligned}
$$

Therefore we get:

$$
\frac{9 \pi}{e^{9}} \leq \iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y \leq 9 \pi
$$

In other words, the integral is roughly in the interval [0.0034, 28.27]

