
LECTURE 23: FINAL EXAM REVIEW

1. Dominated Convergence

Problem 1: Suppose
∫
|g(x)| dx <∞ and |f ′| is bounded, show that

lim
h→0

∫
g(x)

(
f(x+ h)− f(x)

h

)
dx =

∫
g(x)f ′(x)dx

Solution: To use the Dominated Convergence Theorem, we just need
to show that the left function is dominated by an integrable function.∣∣∣∣g(x)

(
f(x+ h)− f(x)

h

)∣∣∣∣ = |g(x)|
∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ = |g(x)| |f ′(c)| ≤ C |g(x)|

Here we used the Mean-Value Theorem

Therefore, since C |g| is integrable, by the Dominated Convergence
Theorem, we have

lim
h→0

∫
g(x)

(
f(x+ h)− f(x)

h

)
dx =

∫
lim
h→0

g(x)

(
f(x+ h)− f(x)

h

)
dx =

∫
gf ′dx

2. Chebyshev’s Inequality

Problem 2: Suppose f ≥ 0 and f is integrable. Show that if t > 0
then
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m {x | f(x) > t} ≤ 1

t

(∫
f

)
Solution: ∫

f =

∫
{x|f(x)>t}

f +

∫
{x|f(x)≤t}

f

≥
∫
{x|f(x)>t}

f

≥
∫
{x|f(x)>t}

t

=tm {x | f(x) > t}

Hence tm {x | f(x) > t} ≤
∫
f

And dividing by t gives the result

3. Lp spaces

Problem 3: Show that if m(E) <∞ and f ∈ L2(E) then f ∈ L1(E)
and give a counterexample for E = R

Solution: The idea is to use that if f ≥ 1 then f ≤ f 2 and hence∫
E

|f | dx =

∫
{|f |≥1}

|f | dx+

∫
{|f |<1}

|f | dx

≤
∫
{|f |≥1}

|f |2 dx+

∫
{|f |<1}

1dx

≤
∫
E

|f |2 dx+

∫
E

1dx

=

∫
E

|f |2 dx+m(E)

<∞
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For the counterexample, let

f(x) =

{
1
x if x ≥ 1

0 otherwise

Then

∫
f 2 =

∫ ∞
1

1

x2
dx = 1 <∞

But

∫
|f | =

∫ ∞
1

1

x
dx =∞

Problem 4: Show that there is a sequence {fn} with fn ∈ L1 and a
function f such that fn → f in L1 but fn(x)→ f(x) for no x

Solution: Define f = 0 and

f1 = 1[0,1]
f2 = 1[0, 12 ]

f3 = 1[ 12 ,1]
f4 = 1[0, 14 ]

, f5 = 1[ 14 ,
1
2 ]
, f6 = 1[ 12 ,

3
4 ]
, f7 = 1[ 34 ,1]

Then fn(x) 9 0 for no x (Given x we have fn(x) = 1 for infinitely
many n), but

‖fn − f‖ =

∫ 1

0

|fn(x)− f(x)| dx =

∫ 1

0

|fn| → 0

Since the areas under fn shrink to 0.

4. Measurability

Problem 5: If {fn} is a sequence of measurable functions, show that
the set of points x at which {fn(x)} converges is measurable.
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Solutions: Usually in those measurability questions, it’s enough to
write your set as a union/intersection of measurable sets.

Here {fn(x)} is Cauchy, meaning for every k there is N such that if
m,n ≥ N then |fm(x)− fn(x)| < 1

k

Hence the set in question can be written as

∞⋂
k=1

∞⋃
N=1

∞⋂
m,n=N

{
x such that |fm(x)− fn(x)| < 1

k

}
And therefore we’re done because the union/intersection of measurable
sets is measurable

5. Derivative

Problem 6: Show that if f is differentiable at x, then so is |f |2 and(
|f |2
)′

(x) = 2f(x) · f ′(x)

Hint: |f |2 = f · f

Solution:

|f |2 (x+ h)

=f(x+ h) · f(x+ h)

= (f(x) + f ′(x)h+ r(h)) · (f(x) + f ′(x)h+ r(h))

= |f |2 (x) + 2f(x) · (f ′(x)h) + (f ′(x)h) · (f ′(x)h) + r(h) · (f(x) + f ′(x)h+ r(h))

We’re done once we show the h2 term and the r(h) term are sublinear
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lim
h→0

|(f ′(x)h) · (f ′(x)h)|
|h|

≤ lim
h→0

|f ′(x)h| |f ′(x)h|
|h|

≤ lim
h→0

‖f ′(x)‖ |h| ‖f ′(x)‖ |h|
|h|

= lim
h→0
‖f ′(x)‖2 |h| = 0

lim
h→0

|r(h) · (f(x) + f ′(x)h+ r(h))|
|h|

≤ lim
h→0

|r(h)|
|h|

(|f(x)|+ ‖f ′(x)‖ |h|+ |r(h)|)

=0× (|f(x)|+ ‖f ′(x)‖ 0 + 0) = 0

6. Partial Derivatives

Problem 7: Let f(0, 0) = 0 and

f(x, y) =
xy
(
x2 − y2

)
x2 + y2

Calculate ∂f
∂x(0, 0) and ∂f

∂y (0, 0). Does f ′(0, 0) exist? Why or why not?

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

Here we used f(x, 0) = 0 for every x, and similarly ∂f
∂y (0, 0) = 0 since

f(0, y) = 0 for every y.

For the differentiability issue, consider

r(x, y) = f(x, y)− f(0, 0)− fx1(0, 0)x− fx2(0, 0)y = f(x, y)

It suffices to show that lim(x,y)→(0,0)
|r(x,y)|√
x2+y2

= 0, but

|r(x, y)|√
x2 + y2

=

∣∣∣∣xy(x2−y2)x2+y2

∣∣∣∣√
x2 + y2

=
|x| |y|

∣∣x2 − y2∣∣
(x2 + y2)

3
2
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To evaluate this limit, it’s easiest to use polar coordinates x = r cos(θ), y =
r sin(θ) then the above limit as (x, y)→ (0, 0) just becomes

lim
r→0

∣∣∣∣∣r cos(θ)r sin(θ)
(
r2 cos2(θ)− r2 sin2(θ)

)
(r2)

3
2

∣∣∣∣∣ = lim
r→0

∣∣∣∣r4 (sin(2θ) cos(2θ))

r3

∣∣∣∣
= lim

r→0
r |sin(2θ) cos(2θ)| = 0

7. Implicit Function Theorem

Problem 8: Consider the system3x2z + 6wy2 − 2z + 1 =0

xz − 4y

z
− 3w − z =0

Show that you can solve for x and y in terms of z and w around the
point (1, 2,−1, 0) and calculate G′(−1, 0) (where G is the graph of x, y
in terms of z, w)

Solution:

F (x, y, z, w) =

[
3x2z + 6wy2 − 2z + 1
xz − 4y

z − 3w − z

]
To use the Implicit Function Theorem, check detFx,y(1, 2,−1, 0) 6= 0
(the derivative with respect to what you want to solve for is nonzero)

Fx,y =

[
6xz 12wy
z −4

z

]
Fx,y(1, 2,−1, 0) =

[
6(1)(−1) 12(0)(2)
−1 − 4

−1

]
=

[
−6 0
−1 4

]
detFx,y(1, 2,−1, 0) = −6(4)− 0 = −24 6= 0



LECTURE 23: FINAL EXAM REVIEW 7

Therefore the Implicit Function Theorem says that there is G such
that (x, y) = G(z, w) near (1, 2,−1, 0). Moreover

G′(−1, 0) = − (Fx,y(1, 2,−1, 0))−1 (Fz,w(1, 2,−1, 0))

Fz,w =

[
3x2 − 2 6y2

x+ 4y
z2 − 1 −3

]
Fz,w(1, 2,−1, 0) =

[
3(1)2 − 2 6(2)2

1 + 4(2)
(−1)2 − 1 −3

]
=

[
1 24
8 −3

]

G′(−1, 0) =−
[
−6 0
−1 4

]−1 [
1 24
8 −3

]
= −

(
− 1

24

)[
4 0
1 −6

] [
1 24
8 −3

]
=

1

24

[
4 96
−47 42

]
8. Fourier Fun

Problem 9: Let f be the 2π periodic function defined on [−π, π]

f(x) =

{
1 if |x| ≤ δ

0 if |x| > δ

(a) Find the Fourier coefficients of f

Case 1: If n 6= 0 then

1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ δ

−δ
e−inxdx

=
1

2π

(
1

−in

)(
e−inδ − einδ

)
=

1

πn

(
einδ − e−inδ

2i

)
=

sin(δn)

πn
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Case 2: If n = 0 then

1

2π

∫ π

−π
f(x)dx =

1

2π
(δ − (−δ)) =

δ

π

(b) Deduce from Parseval that

∞∑
n=1

sin2 (nδ)

n2δ
=
π − δ

2

From Parseval, we get

(
δ

π

)2

+
∞∑
n6=0

(
sin(δn)

πn

)2

=
1

2π

∫ π

−π
(f(x))2 dx

δ2

π2
+ 2

∞∑
n=1

sin2(δn)

π2n2
=

1

2π
(δ − (−δ))

2
∞∑
n=1

sin2(δn)

π2n2
=
δ

π
− δ2

π2

1

π2

∞∑
n=1

sin2(δn)

n2
=
δ

π2

(
π − δ

2

)
∞∑
n=1

sin2(δn)

n2δ
=
π − δ

2

(c) What happens if you let δ = π
2 in the above?

In that case sin2 (δn) = sin2
(
πn
2

)
which is 0 for even n and 1 for

odd n and so the above becomes
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∞∑
n=1

1

(2n− 1)2

(
2

π

)
=
π − π

2

2

∞∑
n=1

1

(2n− 1)2
=
π

2

(π
4

)
∞∑
n=1

1

(2n− 1)2
=
π2

8

(d) Finally, let δ → 0 and show that∫ ∞
0

(
sin(x)

x

)2

dx =
π

2

(Assume the integral is well-defined and converges)

∫ ∞
0

(
sin(x)

x

)2

dx = lim
A→∞

∫ A

0

(
sin(x)

x

)2

dx

Let ε > 0 be given, then there is A > 0 large enough so that∣∣∣∣∣
∫ ∞
0

(
sin(x)

x

)2

dx−
∫ A

0

(
sin(x)

x

)2

dx

∣∣∣∣∣ < ε

4

Let δ = A
M for some large integer M and consider the partition

{0, δ, 2δ, · · · , A = Mδ}, so the Riemann sum of the integral is

δ
M∑
n=1

sin2(nδ)

n2δ2
=

M∑
n=1

sin2(nδ)

n2δ

So there is M large enough so that
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∣∣∣∣∣
∫ A

0

(
sin(x)

x

)2

dx−
M∑
n=1

sin2(nδ)

n2δ

∣∣∣∣∣ < ε

4

From the def of a series, we can make M large enough so that∣∣∣∣∣
M∑
n=1

sin2(nδ)

n2δ
−
(
π − δ

2

)∣∣∣∣∣ < ε

4

Last but not least, make M large (so δ = A
M is small) so that∣∣∣∣π − δ2

− π

2

∣∣∣∣ < ε

4

Combining all 4 pieces, we get the result
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