LECTURE 23: FINAL EXAM REVIEW

1. Dominated Convergence

Problem 1: Suppose $\int|g(x)| d x<\infty$ and $\left|f^{\prime}\right|$ is bounded, show that

$$
\lim _{h \rightarrow 0} \int g(x)\left(\frac{f(x+h)-f(x)}{h}\right) d x=\int g(x) f^{\prime}(x) d x
$$

Solution: To use the Dominated Convergence Theorem, we just need to show that the left function is dominated by an integrable function.

$$
\left|g(x)\left(\frac{f(x+h)-f(x)}{h}\right)\right|=|g(x)|\left|\frac{f(x+h)-f(x)}{h}\right|=|g(x)|\left|f^{\prime}(c)\right| \leq C|g(x)|
$$

Here we used the Mean-Value Theorem
Therefore, since $C|g|$ is integrable, by the Dominated Convergence Theorem, we have

$$
\begin{gathered}
\lim _{h \rightarrow 0} \int g(x)\left(\frac{f(x+h)-f(x)}{h}\right) d x=\int \lim _{h \rightarrow 0} g(x)\left(\frac{f(x+h)-f(x)}{h}\right) d x=\int g f^{\prime} d x \\
\text { 2. CHEBYSHEV'S INEQUALITY }
\end{gathered}
$$

Problem 2: Suppose $f \geq 0$ and f is integrable. Show that if $t>0$ then

$$
m\{x \mid f(x)>t\} \leq \frac{1}{t}\left(\int f\right)
$$

Solution:

$$
\begin{aligned}
\int f & =\int_{\{x \mid f(x)>t\}} f+\int_{\{x \mid f(x) \leq t\}} f \\
& \geq \int_{\{x \mid f(x)>t\}} f \\
& \geq \int_{\{x \mid f(x)>t\}} t \\
& =\operatorname{tm}\{x \mid f(x)>t\}
\end{aligned}
$$

Hence $\operatorname{tm}\{x \mid f(x)>t\} \leq \int f$
And dividing by t gives the result

3. L^{p} SPACES

Problem 3: Show that if $m(E)<\infty$ and $f \in L^{2}(E)$ then $f \in L^{1}(E)$ and give a counterexample for $E=\mathbb{R}$

Solution: The idea is to use that if $f \geq 1$ then $f \leq f^{2}$ and hence

$$
\begin{aligned}
\int_{E}|f| d x & =\int_{\{|f| \geq 1\}}|f| d x+\int_{\{|f|<1\}}|f| d x \\
& \leq \int_{\{|f| \geq 1\}}|f|^{2} d x+\int_{\{|f|<1\}} 1 d x \\
& \leq \int_{E}|f|^{2} d x+\int_{E} 1 d x \\
& =\int_{E}|f|^{2} d x+m(E) \\
& <\infty
\end{aligned}
$$

For the counterexample, let

$$
\begin{gathered}
f(x)= \begin{cases}\frac{1}{x} & \text { if } x \geq 1 \\
0 & \text { otherwise }\end{cases} \\
\text { Then } \int f^{2}=\int_{1}^{\infty} \frac{1}{x^{2}} d x=1<\infty \\
\text { But } \int|f|=\int_{1}^{\infty} \frac{1}{x} d x=\infty
\end{gathered}
$$

Problem 4: Show that there is a sequence $\left\{f_{n}\right\}$ with $f_{n} \in L^{1}$ and a function f such that $f_{n} \rightarrow f$ in L^{1} but $f_{n}(x) \rightarrow f(x)$ for no x

Solution: Define $f=0$ and

$$
\begin{gathered}
f_{1}=1_{[0,1]} \\
f_{2}=1_{\left[0, \frac{1}{2}\right]} f_{3}=1_{\left[\frac{1}{2}, 1\right]} \\
f_{4}=1_{\left[0, \frac{1}{4}\right]}, f_{5}=1_{\left[\frac{1}{4}, \frac{1}{2}\right]}, f_{6}=1_{\left[\frac{1}{2}, \frac{3}{4}\right]}, f_{7}=1_{\left[\frac{3}{4}, 1\right]}
\end{gathered}
$$

Then $f_{n}(x) \nrightarrow 0$ for no x (Given x we have $f_{n}(x)=1$ for infinitely many n), but

$$
\left\|f_{n}-f\right\|=\int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=\int_{0}^{1}\left|f_{n}\right| \rightarrow 0
$$

Since the areas under f_{n} shrink to 0 .

4. Measurability

Problem 5: If $\left\{f_{n}\right\}$ is a sequence of measurable functions, show that the set of points x at which $\left\{f_{n}(x)\right\}$ converges is measurable.

Solutions: Usually in those measurability questions, it's enough to write your set as a union/intersection of measurable sets.

Here $\left\{f_{n}(x)\right\}$ is Cauchy, meaning for every k there is N such that if $m, n \geq N$ then $\left|f_{m}(x)-f_{n}(x)\right|<\frac{1}{k}$

Hence the set in question can be written as

$$
\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{m, n=N}^{\infty}\left\{x \text { such that }\left|f_{m}(x)-f_{n}(x)\right|<\frac{1}{k}\right\}
$$

And therefore we're done because the union/intersection of measurable sets is measurable

5. Derivative

Problem 6: Show that if f is differentiable at x, then so is $|f|^{2}$ and

$$
\left(|f|^{2}\right)^{\prime}(x)=2 f(x) \cdot f^{\prime}(x)
$$

Hint: $|f|^{2}=f \cdot f$

Solution:

$$
\begin{aligned}
& |f|^{2}(x+h) \\
= & f(x+h) \cdot f(x+h) \\
= & \left(f(x)+f^{\prime}(x) h+r(h)\right) \cdot\left(f(x)+f^{\prime}(x) h+r(h)\right) \\
= & |f|^{2}(x)+2 f(x) \cdot\left(f^{\prime}(x) h\right)+\left(f^{\prime}(x) h\right) \cdot\left(f^{\prime}(x) h\right)+r(h) \cdot\left(f(x)+f^{\prime}(x) h+r(h)\right)
\end{aligned}
$$

We're done once we show the h^{2} term and the $r(h)$ term are sublinear

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\left|\left(f^{\prime}(x) h\right) \cdot\left(f^{\prime}(x) h\right)\right|}{|h|} & \leq \lim _{h \rightarrow 0} \frac{\left|f^{\prime}(x) h\right|\left|f^{\prime}(x) h\right|}{|h|} \leq \lim _{h \rightarrow 0} \frac{\left\|f^{\prime}(x)\right\||h|\left\|f^{\prime}(x)\right\||h|}{|h|} \\
& =\lim _{h \rightarrow 0}\left\|f^{\prime}(x)\right\|^{2}|h|=0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\left|r(h) \cdot\left(f(x)+f^{\prime}(x) h+r(h)\right)\right|}{|h|} & \leq \lim _{h \rightarrow 0} \frac{|r(h)|}{|h|}\left(|f(x)|+\left\|f^{\prime}(x)\right\||h|+|r(h)|\right) \\
& =0 \times\left(|f(x)|+\left\|f^{\prime}(x)\right\| 0+0\right)=0
\end{aligned}
$$

6. Partial Derivatives

Problem 7: Let $f(0,0)=0$ and

$$
f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}
$$

Calculate $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$. Does $f^{\prime}(0,0)$ exist? Why or why not?

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
$$

Here we used $f(x, 0)=0$ for every x, and similarly $\frac{\partial f}{\partial y}(0,0)=0$ since $f(0, y)=0$ for every y.

For the differentiability issue, consider

$$
r(x, y)=f(x, y)-f(0,0)-f_{x_{1}}(0,0) x-f_{x_{2}}(0,0) y=f(x, y)
$$

It suffices to show that $\lim _{(x, y) \rightarrow(0,0)} \frac{|r(x, y)|}{\sqrt{x^{2}+y^{2}}}=0$, but

$$
\frac{|r(x, y)|}{\sqrt{x^{2}+y^{2}}}=\frac{\left|\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}\right|}{\sqrt{x^{2}+y^{2}}}=\frac{|x||y|\left|x^{2}-y^{2}\right|}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

To evaluate this limit, it's easiest to use polar coordinates $x=r \cos (\theta), y=$ $r \sin (\theta)$ then the above limit as $(x, y) \rightarrow(0,0)$ just becomes

$$
\begin{aligned}
\lim _{r \rightarrow 0}\left|\frac{r \cos (\theta) r \sin (\theta)\left(r^{2} \cos ^{2}(\theta)-r^{2} \sin ^{2}(\theta)\right)}{\left(r^{2}\right)^{\frac{3}{2}}}\right| & =\lim _{r \rightarrow 0}\left|\frac{r^{4}(\sin (2 \theta) \cos (2 \theta))}{r^{3}}\right| \\
& =\lim _{r \rightarrow 0} r|\sin (2 \theta) \cos (2 \theta)|=0
\end{aligned}
$$

7. Implicit Function Theorem

Problem 8: Consider the system

$$
\left\{\begin{array}{r}
3 x^{2} z+6 w y^{2}-2 z+1=0 \\
x z-\frac{4 y}{z}-3 w-z=0
\end{array}\right.
$$

Show that you can solve for x and y in terms of z and w around the point $(1,2,-1,0)$ and calculate $G^{\prime}(-1,0)$ (where G is the graph of x, y in terms of $z, w)$

Solution:

$$
F(x, y, z, w)=\left[\begin{array}{c}
3 x^{2} z+6 w y^{2}-2 z+1 \\
x z-\frac{4 y}{z}-3 w-z
\end{array}\right]
$$

To use the Implicit Function Theorem, check $\operatorname{det} F_{x, y}(1,2,-1,0) \neq 0$ (the derivative with respect to what you want to solve for is nonzero)

$$
\begin{gathered}
F_{x, y}=\left[\begin{array}{cc}
6 x z & 12 w y \\
z & -\frac{4}{z}
\end{array}\right] \\
F_{x, y}(1,2,-1,0)=\left[\begin{array}{cc}
6(1)(-1) & 12(0)(2) \\
-1 & -\frac{4}{-1}
\end{array}\right]=\left[\begin{array}{ll}
-6 & 0 \\
-1 & 4
\end{array}\right] \\
\operatorname{det} F_{x, y}(1,2,-1,0)=-6(4)-0=-24 \neq 0
\end{gathered}
$$

Therefore the Implicit Function Theorem says that there is G such that $(x, y)=G(z, w)$ near $(1,2,-1,0)$. Moreover

$$
\begin{gathered}
G^{\prime}(-1,0)=-\left(F_{x, y}(1,2,-1,0)\right)^{-1}\left(F_{z, w}(1,2,-1,0)\right) \\
F_{z, w}=\left[\begin{array}{cc}
3 x^{2}-2 & 6 y^{2} \\
x+\frac{4 y}{z^{2}}-1 & -3
\end{array}\right] \\
F_{z, w}(1,2,-1,0)=\left[\begin{array}{cc}
3(1)^{2}-2 & 6(2)^{2} \\
1+\frac{4(2)}{(-1)^{2}}-1 & -3
\end{array}\right]=\left[\begin{array}{cc}
1 & 24 \\
8 & -3
\end{array}\right] \\
G^{\prime}(-1,0)=-\left[\begin{array}{ll}
-6 & 0 \\
-1 & 4
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & 24 \\
8 & -3
\end{array}\right]=-\left(-\frac{1}{24}\right)\left[\begin{array}{cc}
4 & 0 \\
1 & -6
\end{array}\right]\left[\begin{array}{cc}
1 & 24 \\
8 & -3
\end{array}\right]=\frac{1}{24}\left[\begin{array}{cc}
4 & 96 \\
-47 & 42
\end{array}\right]
\end{gathered}
$$

8. Fourier Fun

Problem 9: Let f be the 2π periodic function defined on $[-\pi, \pi]$

$$
f(x)= \begin{cases}1 & \text { if }|x| \leq \delta \\ 0 & \text { if }|x|>\delta\end{cases}
$$

(a) Find the Fourier coefficients of f

Case 1: If $n \neq 0$ then

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x & =\frac{1}{2 \pi} \int_{-\delta}^{\delta} e^{-i n x} d x \\
& =\frac{1}{2 \pi}\left(\frac{1}{-i n}\right)\left(e^{-i n \delta}-e^{i n \delta}\right) \\
& =\frac{1}{\pi n}\left(\frac{e^{i n \delta}-e^{-i n \delta}}{2 i}\right) \\
& =\frac{\sin (\delta n)}{\pi n}
\end{aligned}
$$

Case 2: If $n=0$ then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi}(\delta-(-\delta))=\frac{\delta}{\pi}
$$

(b) Deduce from Parseval that

$$
\sum_{n=1}^{\infty} \frac{\sin ^{2}(n \delta)}{n^{2} \delta}=\frac{\pi-\delta}{2}
$$

From Parseval, we get

$$
\begin{aligned}
\left(\frac{\delta}{\pi}\right)^{2}+\sum_{n \neq 0}^{\infty}\left(\frac{\sin (\delta n)}{\pi n}\right)^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x))^{2} d x \\
\frac{\delta^{2}}{\pi^{2}}+2 \sum_{n=1}^{\infty} \frac{\sin ^{2}(\delta n)}{\pi^{2} n^{2}} & =\frac{1}{2 \pi}(\delta-(-\delta)) \\
2 \sum_{n=1}^{\infty} \frac{\sin ^{2}(\delta n)}{\pi^{2} n^{2}} & =\frac{\delta}{\pi}-\frac{\delta^{2}}{\pi^{2}} \\
\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin ^{2}(\delta n)}{n^{2}} & =\frac{\delta}{\pi^{2}}\left(\frac{\pi-\delta}{2}\right) \\
\sum_{n=1}^{\infty} \frac{\sin ^{2}(\delta n)}{n^{2} \delta} & =\frac{\pi-\delta}{2}
\end{aligned}
$$

(c) What happens if you let $\delta=\frac{\pi}{2}$ in the above?

In that case $\sin ^{2}(\delta n)=\sin ^{2}\left(\frac{\pi n}{2}\right)$ which is 0 for even n and 1 for odd n and so the above becomes

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}\left(\frac{2}{\pi}\right) & =\frac{\pi-\frac{\pi}{2}}{2} \\
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} & =\frac{\pi}{2}\left(\frac{\pi}{4}\right) \\
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} & =\frac{\pi^{2}}{8}
\end{aligned}
$$

(d) Finally, let $\delta \rightarrow 0$ and show that

$$
\int_{0}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} d x=\frac{\pi}{2}
$$

(Assume the integral is well-defined and converges)

$$
\int_{0}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} d x=\lim _{A \rightarrow \infty} \int_{0}^{A}\left(\frac{\sin (x)}{x}\right)^{2} d x
$$

Let $\epsilon>0$ be given, then there is $A>0$ large enough so that

$$
\left|\int_{0}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} d x-\int_{0}^{A}\left(\frac{\sin (x)}{x}\right)^{2} d x\right|<\frac{\epsilon}{4}
$$

Let $\delta=\frac{A}{M}$ for some large integer M and consider the partition $\{0, \delta, 2 \delta, \cdots, A=M \delta\}$, so the Riemann sum of the integral is

$$
\delta \sum_{n=1}^{M} \frac{\sin ^{2}(n \delta)}{n^{2} \delta^{2}}=\sum_{n=1}^{M} \frac{\sin ^{2}(n \delta)}{n^{2} \delta}
$$

So there is M large enough so that

$$
\left|\int_{0}^{A}\left(\frac{\sin (x)}{x}\right)^{2} d x-\sum_{n=1}^{M} \frac{\sin ^{2}(n \delta)}{n^{2} \delta}\right|<\frac{\epsilon}{4}
$$

From the def of a series, we can make M large enough so that

$$
\left|\sum_{n=1}^{M} \frac{\sin ^{2}(n \delta)}{n^{2} \delta}-\left(\frac{\pi-\delta}{2}\right)\right|<\frac{\epsilon}{4}
$$

Last but not least, make M large (so $\delta=\frac{A}{M}$ is small) so that

$$
\left|\frac{\pi-\delta}{2}-\frac{\pi}{2}\right|<\frac{\epsilon}{4}
$$

Combining all 4 pieces, we get the result

