LECTURE 24: DOUBLE INTEGRALS IN POLAR
COORDINATES

Today: It’s getting chilly because we’ll do double integrals in polar

coordinates
I m /.1(

1. REcAP: POLAR COORDINATES

Main Idea: We can write (z,y) as (r,0) where r is the distance be-
tween (z,y) and the origin, and 6 is the angle between (z,y) and the
T—axis:

(39) = (1,6)

Date: Friday, October 22, 2021.
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Polar Coordinates:

{x —r cos(0)

y =rsin(0)

In addition, we often use the following

332 + y2 :T2

tan ! <%) =0

2. INTEGRALS IN POLAR COORDINATES

Let’s use polar coordinates to evaluate some impossible integrals

Example 1:

Calculate the following integral, where D is the disk 2> + y?> < 4

// (x2 4= yz)% dxdy
D

Rule of Thumb: If you see 22 + y? or disks, use polar coordinates

STEP 1: Write f in polar coordinates:

flay) = (2 +97)" = (?) =17 = f(r.0) =’

STEP 2: Inequalities: D is a disk of radius 2:
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0

~

x2+y2=4

In terms of r and 6, this becomes:

0<r<2?2
0<6<27r

STEP 3: Integrate

Polar Coordinate Formula:

//Df(x,y)d:cdy://Df(r,Q)rdrdQ

/AN /N /\ DoNOT forget about the r !!! Think like a pirate, “Arrrrrrr
dr d@”

rrrrr dr dO
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/ | /D (QJW)dedy
I
/o

r3 rdrdd

Note: If you're curious why there is an r in rdrdf, check out the
tional appendix| at the end of the lecture notes.

3. INTERLUDE: AN IMPORTANT INTEGRAL

Video: Trigonometric Integral

Before we continue, let me remind you of an important integral that
we’ll use many times in this course


https://youtu.be/54DrOzdDSa0
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Example 2:

Evaluate the following integral:

/0 cos?(0)dd

INEY

It all starts with:
cos(26) = cos*(#) — sin*(#)
=cos*(6) — (1 — cos*(0))
=2 cos?(f) — 1
Now solve for cos?(6):
2 cos?(f) — 1 = cos(26)
2 cos?(#) =1 + cos(20)
1 1
2
— 4 = cos(2
cos” () 515 cos(26)
And finally integrate:

0 1 1\11%
:[§+§sin(20) <§)]0 (think u = 20)
T 1 . /7
:§+Zsm(§)—0—0
_E+1_7T+2
8 4 8
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Note: For [sin®*(f)dd, it’s the same, except this time you have

1 1
<2 - - =
sin®(0) = 573 cos(20)

4. MORE POLAR FUN

Video: Polar Integral ]

Example 3:

Evaluate the following, where D is the region in the first quadrant
bounded by the circle 22 +y? = 9, the z—axis, and the line y =

/ / z2dxdy
D

STEP 1: Function

f(x,y) = T (r COS(Q))2 = r? COSQ(Q)
STEP 2: Inequalities



https://www.youtube.com/watch?v=G9p1lf068y4
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The circle 22 4+ y? = 9 has radius 3 and also y = x corresponds to an
angle of 6§ = 7 (45 degrees), hence D is:

STEP 3: Integrate

| [ sadady
D
T3
:/ / % cos?(6) rdrdf
o Jo
T3
:/ / r3 cos®(0)drdf
o Jo
3 jus
3

= ( /0 r dr) ( /0 0082(9)d9>

473
2
B N Y i (See Example above)

_81 T+ 2
4 8
81

i

5. VOLUME BETWEEN SURFACES

[ Video: Volume of an ice cream cone

Since we worked so hard so far, let’s treat ourselves with some ice
cream and calculate the volume of an ice cream cone ®


https://youtu.be/ozTYLAqJpIE
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‘AA) &
E,}‘

Find the volume of the region between

z=+x2+y?and z = /8 — a2 — y?

STEP 1: Picture

Example 4:

=22 +y? = 22 =2+ y? and z > 0, so an upper half-cone

z=1/8 — (22 +y?) = 2* = 8—(2°+y?) = 224+9°+2°> = 8 = Upper Hemisphere

1\Z:m

WTF

v
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This looks messy, so let’s redraw it

Re-draw:
t z:\/8—;>cz—y2
/"— _____ C T~
x2+y% =4
' Z = \/x?+y?
’.—""— _-""-s\

STEP 2: Just for areas in calculus, here the volume is given by the
integral of the bigger function minus the smaller function:

Volume = // Bigger — Smaller dxdy = // V8 — 22 — 12 —\/a? + y2dxdy
D D

STEP 3: Find D

Here D is shadow under the solid, which is given precisely by the in-
tersection of the two surfaces (this is typical)

Intersection:
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V8 — a2 — y? =\/12 4 12
8 — 22 — y? =2 + ¢

8 =2(2* +y?)
x2 + y2 :4
So D = Disk of radius 2
x?+y2=4

STEP 4: Integrate

Function:

VB— @+ 1) - Va2 = V8- = Vit = /82—y

Endpoints:

Integral:
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2 2 2
V:/ / [\/S—TQ—T}’FCZTCZQZQW/ (\/8—r2)7’—r2dr
o Jo 0

o /02 (V8 =72) rdr =2r /84 NG (—%@)

1
(=8 —1? du=—2rdr = rdr = —§du, u(0) = 8, u(2)

81 4
:27r/ —uzdu
4 2

2 167 1
v (327, t0m 16m _ (32m 2_?’2_“:?’2_”<\/§_1)
3 3 3 3
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6. INTEGRAL OVER A RING

Video: Integral over a ring ]

As Beyoncé once said: If you like it then you shoulda put a ring on it

Example 5: (extra practice)

Find the average value of f(x,y) = tan™! (%) over the ring D

between the circles 22+y? = a? and 2?+y? = b? (where 0 < a < b)

The average value of f(x,y) over D is

I Jp flz,y)dady

Area of D
STEP 1: Function:
f(z,y) = tan™* <g) =6 (Much easier)
T

STEP 2: Find D


https://youtu.be/YoppUy7TaA4
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3

b

)
g

x% +y2 = a?
Inequalities:
a<r<b
0<60<2m

STEP 3: Integrate:

J R
:/O%/aberdrde
_ ( / 2;9d9> b( / b rdr)
-], 5],

13
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e (1
92 2 2
42
T

2 (bz _ a2)

STEP 4: Average
Since D is the difference between two disks, so the area of D is:

Area (D) = nb* — ma® = 7 (b° — a*)
Therefore the average is given by:
Integral @ (b —a?) 2
sy = — =177
Area 7 (6% — a?) 7r
Note: Notice how this answer is independent of the a and b, WOW!!!

7. MORE PRACTICE

Example 6: (extra practice)

2 V2x—x2
/ / 9V 22 + y?dydz
0 0

STEP 1: Function:

f(z,y) =9r
STEP 2: Find D

0 <y < v2x — 22

0<zx <2
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y =2z — a2 =y® =2 — 2
=22 -2 4+y>=0
=z —-1)2-1+4°=0
=@ —-1)P2+y" =1

So D is an upper half circle centered at (1,0) and radius 1
STEP 3: Inequalities

In terms of polar coordinates, notice that

y2 =2z — g
(rsin(0))* =2r cos(#) — (r cos(0))?
r?sin(0) =2r cos(#) — r? cos?(h)
r? cos?() + r? sin®(0) =2r cos(6)
r? =2r cos(6)

r =2cos(f)

Moreover, if § = 0, we get r = 2 (right endpoint of circle) and if 6 = F,
we get 7 = 0 (left endpoint of circle), hence 6 goes from 0 to § (and
not 0 to 7, as one might at first expect), therefore our inequalities are:

0 <r < 2cos(f)
T
0<0<—
- =2
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r = 2 cos(6)

STEP 4: Integrate:

//f(x,y)dl’dy
D
3 2 cos(0)
= / / 9rr drdf
0 Jo
5 2 cos()
= / / 92 drdf
0o Jo

[37”3] 2 cos(0) do
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24 (1 — sin*(6)) cos(6)do

s(0),du = —sin(0)df, u(0) = 1,u (E) =0)

[

(u =

/1024 1 —u?) (—du)
)

1
24 — 24u’du

= [24u® — 8u']
—24 -8 —-0+0
—16

8. OPTIONAL APPENDIX: rdrdf

Where does the r in rdrdf come from? Here is a rough explanation.

La

L

‘ The length of an arc of radius L and angle o is La \

Why? An angle of 27 corresponds to a length of 27 L, so an angle of
« corresponds to a length of aLL

Suppose you start at a point (z,y)
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Thinking in terms of polar, change the radius by a tiny amount dr and
the angle by a tiny amount df. Then you get the following wedge:

A J

The radius of the (inside) wedge is L = r and the angle is o = df, so
by the above formula the length of the (inside) wedge is rdf.

The thickness of the wedge is dr

Thinking of the wedge as a rectangle, the area becomes approximately
Area =~ Length x Thickness = rdf x dr = r drdf

Which is where the rdrdf comes from

Of course, this needs a bit more justification: Why is this the same
as drdy? And why can you just say that the wedge is like a rectangle
(which it technically isn’t), but at least this explains roughly where
the r comes from.
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