
LECTURE 24: DOUBLE INTEGRALS IN POLAR
COORDINATES

Today: It’s getting chilly because we’ll do double integrals in polar
coordinates

1. Recap: Polar Coordinates

Main Idea: We can write (x, y) as (r, θ) where r is the distance be-
tween (x, y) and the origin, and θ is the angle between (x, y) and the
x−axis:

Date: Friday, October 22, 2021.
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Polar Coordinates: {
x =r cos(θ)

y =r sin(θ)

In addition, we often use the following

x2 + y2 =r2

tan−1
(y
x

)
=θ

2. Integrals in Polar Coordinates

Let’s use polar coordinates to evaluate some impossible integrals

Example 1:

Calculate the following integral, where D is the disk x2 + y2 ≤ 4∫ ∫
D

(
x2 + y2

) 3
2 dxdy

Rule of Thumb: If you see x2 + y2 or disks, use polar coordinates

STEP 1: Write f in polar coordinates:

f(x, y) =
(
x2 + y2

) 3
2 =

(
r2
) 3

2 = r3 ⇒ f(r, θ) = r3

STEP 2: Inequalities: D is a disk of radius 2:
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In terms of r and θ, this becomes:{
0 ≤ r ≤ 2

0 ≤ θ ≤ 2π

STEP 3: Integrate

Polar Coordinate Formula:∫ ∫
D

f(x, y)dxdy =

∫ ∫
D

f(r, θ) r drdθ

!△ !△ !△ Do NOT forget about the r !!! Think like a pirate, “Arrrrrrr
dr dθ”
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∫ ∫
D

(√
x2 + y2

)3

dxdy

=

∫ 2π

0

∫ 2

0

r3 rdrdθ

=

∫ 2π

0

∫ 2

0

r4drdθ

=

(∫ 2

0

r4dr

)(∫ 2π

0

1dθ

)
=(2π)

[
r5

5

]2
0

=(2π)
25

5

=
64π

5

Note: If you’re curious why there is an r in rdrdθ, check out the op-
tional appendix at the end of the lecture notes.

3. Interlude: An important integral

Video: Trigonometric Integral

Before we continue, let me remind you of an important integral that
we’ll use many times in this course

https://youtu.be/54DrOzdDSa0
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Example 2:

Evaluate the following integral:∫ π
4

0

cos2(θ)dθ

It all starts with:

cos(2θ) = cos2(θ)− sin2(θ)

= cos2(θ)−
(
1− cos2(θ)

)
=2 cos2(θ)− 1

Now solve for cos2(θ):

2 cos2(θ)− 1 = cos(2θ)

2 cos2(θ) =1 + cos(2θ)

cos2(θ) =
1

2
+

1

2
cos(2θ)

And finally integrate:∫ π
4

0

cos2(θ)dθ

=

∫ π
4

0

1

2
+

1

2
cos(2θ)dθ

=

[
θ

2
+

1

2
sin(2θ)

(
1

2

)]π
4

0

(think u = 2θ)

=
π

8
+

1

4
sin

(π
2

)
− 0− 0

=
π

8
+

1

4
=

π + 2

8
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Note: For
∫
sin2(θ)dθ, it’s the same, except this time you have

sin2(θ) =
1

2
− 1

2
cos(2θ)

4. more polar fun

Video: Polar Integral

Example 3:

Evaluate the following, where D is the region in the first quadrant
bounded by the circle x2+ y2 = 9, the x−axis, and the line y = x∫ ∫

D

x2dxdy

STEP 1: Function

f(x, y) = x2 = (r cos(θ))2 = r2 cos2(θ)

STEP 2: Inequalities

https://www.youtube.com/watch?v=G9p1lf068y4
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The circle x2 + y2 = 9 has radius 3 and also y = x corresponds to an
angle of θ = π

4 (45 degrees), hence D is:{
0 ≤ r ≤ 3

0 ≤ θ ≤ π

4

STEP 3: Integrate∫ ∫
D

f(x, y)dxdy

=

∫ π
4

0

∫ 3

0

r2 cos2(θ) rdrdθ

=

∫ π
4

0

∫ 3

0

r3 cos2(θ)drdθ

=

(∫ 3

0

r3dr

)(∫ π
4

0

cos2(θ)dθ

)
=

[
r4

4

]3
0

(
π + 2

8

)
(See Example above)

=
81

4

(
π + 2

8

)
=
81

32
(π + 2)

5. Volume between surfaces

Video: Volume of an ice cream cone

Since we worked so hard so far, let’s treat ourselves with some ice
cream and calculate the volume of an ice cream cone ,

https://youtu.be/ozTYLAqJpIE
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Example 4:

Find the volume of the region between

z =
√

x2 + y2 and z =
√

8− x2 − y2

STEP 1: Picture

z =
√

x2 + y2 ⇒ z2 = x2 + y2 and z ≥ 0, so an upper half-cone

z =
√

8− (x2 + y2) ⇒ z2 = 8−(x2+y2) ⇒ x2+y2+z2 = 8 ⇒ Upper Hemisphere
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This looks messy, so let’s redraw it

Re-draw:

STEP 2: Just for areas in calculus, here the volume is given by the
integral of the bigger function minus the smaller function:

Volume =

∫ ∫
D

Bigger − Smaller dxdy =

∫ ∫
D

√
8− x2 − y2−

√
x2 + y2dxdy

STEP 3: Find D

Here D is shadow under the solid, which is given precisely by the in-
tersection of the two surfaces (this is typical)

Intersection:
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√
8− x2 − y2 =

√
x2 + y2

8− x2 − y2 =x2 + y2

8 =2(x2 + y2)

x2 + y2 =4

So D = Disk of radius 2

STEP 4: Integrate

Function:

√
8− (x2 + y2)−

√
x2 + y2 =

√
8− r2 −

√
r2 =

√
8− r2 − r

Endpoints:

0 ≤ r ≤ 2

0 ≤ θ ≤ 2π

Integral:
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V =

∫ 2π

0

∫ 2

0

[√
8− r2 − r

]
r drdθ = 2π

∫ 2

0

(√
8− r2

)
r − r2dr

2π

∫ 2

0

(√
8− r2

)
rdr =2π

∫ 4

8

√
u

(
−1

2
du

)
(u = 8− r2, du = −2rdr ⇒ rdr = −1

2
du, u(0) = 8, u(2) = 4)

=2π

∫ 8

4

1

2
u

1
2du

=2π

[(
1

2

)(
2

3

)
u

3
2

]8
4

=2π

[(
1

3

)
u
√
u

]8
4

=
2π

3

(
8
√
8− 4

√
4
)

=
2π

3

(
8(2

√
2)− 4(2)

)
=
2π

3

(
16
√
2− 8

)
=

(
32π

3

)√
2−

(
16π

3

)

2π

∫ 2

0

−r2dr =2π

[
−1

3
r3
]2
0

= −2π

3
(8− 0) = −16π

3

V =

(
32π

3

)√
2− 16π

3
− 16π

3
=

(
32π

3

)√
2− 32π

3
=

32π

3

(√
2− 1

)
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6. Integral over a ring

Video: Integral over a ring

As Beyoncé once said: If you like it then you shoulda put a ring on it

Example 5: (extra practice)

Find the average value of f(x, y) = tan−1
(
y
x

)
over the ring D

between the circles x2+y2 = a2 and x2+y2 = b2 (where 0 < a < b)

Recall:

The average value of f(x, y) over D is∫ ∫
D f(x, y)dxdy

Area of D

STEP 1: Function:

f(x, y) = tan−1
(y
x

)
= θ (Much easier)

STEP 2: Find D

https://youtu.be/YoppUy7TaA4
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Inequalities:

a ≤ r ≤ b

0 ≤ θ ≤ 2π

STEP 3: Integrate: ∫ ∫
D

f(x, y)dxdy

=

∫ 2π

0

∫ b

a

θr drdθ

=

(∫ 2π

0

θdθ

)(∫ b

a

rdr

)
=

[
θ2

2

]2π
0

[
r2

2

]b
a
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=
(2π)2

2

(
b2

2
− a2

2

)
=
4π2

4

(
b2 − a2

)
=π2

(
b2 − a2

)
STEP 4: Average

Since D is the difference between two disks, so the area of D is:

Area (D) = πb2 − πa2 = π
(
b2 − a2

)
Therefore the average is given by:

Integral

Area
=

π2
(
b2 − a2

)
π (b2 − a2)

=
π2

π
= π

Note: Notice how this answer is independent of the a and b, WOW!!!

7. More Practice

Example 6: (extra practice)∫ 2

0

∫ √
2x−x2

0

9
√

x2 + y2dydx

STEP 1: Function:

f(x, y) = 9r

STEP 2: Find D

0 ≤y ≤
√
2x− x2

0 ≤x ≤ 2
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y =
√

2x− x2 ⇒y2 = 2x− x2

⇒x2 − 2x+ y2 = 0

⇒(x− 1)2 − 1 + y2 = 0

⇒(x− 1)2 + y2 = 1

So D is an upper half circle centered at (1, 0) and radius 1

STEP 3: Inequalities

In terms of polar coordinates, notice that

y2 =2x− x2

(r sin(θ))2 =2r cos(θ)− (r cos(θ))2

r2 sin2(θ) =2r cos(θ)− r2 cos2(θ)

r2 cos2(θ) + r2 sin2(θ) =2r cos(θ)

r2 =2r cos(θ)

r =2 cos(θ)

Moreover, if θ = 0, we get r = 2 (right endpoint of circle) and if θ = π
2 ,

we get r = 0 (left endpoint of circle), hence θ goes from 0 to π
2 (and

not 0 to π, as one might at first expect), therefore our inequalities are:

0 ≤r ≤ 2 cos(θ)

0 ≤θ ≤ π

2
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STEP 4: Integrate: ∫ ∫
D

f(x, y)dxdy

=

∫ π
2

0

∫ 2 cos(θ)

0

9rr drdθ

=

∫ π
2

0

∫ 2 cos(θ)

0

9r2 drdθ

=

∫ π
2

0

[
3r3

]2 cos(θ)
0

dθ

=

∫ π
2

0

3 (2 cos(θ))3 dθ

=

∫ π
2

0

(3) 8 cos3(θ)dθ

=

∫ π
2

0

24 cos2(θ) cos(θ)dθ
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=

∫ π
2

0

24
(
1− sin2(θ)

)
cos(θ)dθ

(u = cos(θ), du = − sin(θ)dθ, u(0) = 1, u
(π
2

)
= 0)

=

∫ 0

1

24
(
1− u2

)
(−du)

=

∫ 1

0

24− 24u2du

=
[
24u2 − 8u4

]1
0

=24− 8− 0 + 0

=16

8. Optional Appendix: rdrdθ

Where does the r in rdrdθ come from? Here is a rough explanation.

Recall:

The length of an arc of radius L and angle α is Lα

Why? An angle of 2π corresponds to a length of 2πL, so an angle of
α corresponds to a length of αL

Suppose you start at a point (x, y)
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Thinking in terms of polar, change the radius by a tiny amount dr and
the angle by a tiny amount dθ. Then you get the following wedge:

The radius of the (inside) wedge is L = r and the angle is α = dθ, so
by the above formula the length of the (inside) wedge is rdθ.

The thickness of the wedge is dr

Thinking of the wedge as a rectangle, the area becomes approximately

Area ≈ Length × Thickness = rdθ × dr = r drdθ

Which is where the rdrdθ comes from

Of course, this needs a bit more justification: Why is this the same
as dxdy? And why can you just say that the wedge is like a rectangle
(which it technically isn’t), but at least this explains roughly where
the r comes from.
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