LECTURE 24: DOUBLE INTEGRALS IN POLAR COORDINATES

Today: It's getting chilly because we'll do double integrals in polar coordinates

1. Recap: Polar Coordinates

Main Idea: We can write (x, y) as (r, θ) where r is the distance between (x, y) and the origin, and θ is the angle between (x, y) and the x-axis:

Date: Friday, October 22, 2021.

Polar Coordinates:	
	$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$

In addition, we often use the following

$$x^{2} + y^{2} = r^{2}$$
$$\tan^{-1}\left(\frac{y}{x}\right) = \theta$$

2. INTEGRALS IN POLAR COORDINATES

Let's use polar coordinates to evaluate some impossible integrals

Example 1: Calculate the following integral, where D is the disk $x^2 + y^2 \le 4$ $\int \int_D \left(x^2 + y^2\right)^{\frac{3}{2}} dx dy$

Rule of Thumb: If you see $x^2 + y^2$ or disks, use polar coordinates

STEP 1: Write f in polar coordinates:

$$f(x,y) = (x^2 + y^2)^{\frac{3}{2}} = (r^2)^{\frac{3}{2}} = r^3 \Rightarrow f(r,\theta) = r^3$$

STEP 2: Inequalities: *D* is a disk of radius 2:

In terms of r and θ , this becomes:

$$\begin{cases} 0 \le r \le 2\\ 0 \le \theta \le 2\pi \end{cases}$$

STEP 3: Integrate

 \triangle \triangle \triangle Do NOT forget about the r !!! Think like a pirate, "Arrrrrr dr d θ "

$$\int \int_{D} \left(\sqrt{x^2 + y^2}\right)^3 dx dy$$
$$= \int_{0}^{2\pi} \int_{0}^{2} r^3 r dr d\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{2} r^4 dr d\theta$$
$$= \left(\int_{0}^{2} r^4 dr\right) \left(\int_{0}^{2\pi} 1 d\theta\right)$$
$$= (2\pi) \left[\frac{r^5}{5}\right]_{0}^{2}$$
$$= (2\pi) \frac{2^5}{5}$$
$$= \frac{64\pi}{5}$$

Note: If you're curious why there is an r in $rdrd\theta$, check out the optional appendix at the end of the lecture notes.

3. INTERLUDE: AN IMPORTANT INTEGRAL

Video: Trigonometric Integral

Before we continue, let me remind you of an important integral that we'll use many times in this course

Example 2:

Evaluate the following integral:

$$\int_0^{\frac{\pi}{4}} \cos^2(\theta) d\theta$$

It all starts with:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= \cos^2(\theta) - (1 - \cos^2(\theta))$$
$$= 2\cos^2(\theta) - 1$$

Now solve for $\cos^2(\theta)$:

$$2\cos^{2}(\theta) - 1 = \cos(2\theta)$$
$$2\cos^{2}(\theta) = 1 + \cos(2\theta)$$
$$\cos^{2}(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$$

And finally integrate:

$$\int_{0}^{\frac{\pi}{4}} \cos^{2}(\theta) d\theta$$

= $\int_{0}^{\frac{\pi}{4}} \frac{1}{2} + \frac{1}{2} \cos(2\theta) d\theta$
= $\left[\frac{\theta}{2} + \frac{1}{2} \sin(2\theta) \left(\frac{1}{2}\right)\right]_{0}^{\frac{\pi}{4}}$ (think $u = 2\theta$)
= $\frac{\pi}{8} + \frac{1}{4} \sin\left(\frac{\pi}{2}\right) - 0 - 0$
= $\frac{\pi}{8} + \frac{1}{4} = \frac{\pi + 2}{8}$

Note: For $\int \sin^2(\theta) d\theta$, it's the same, except this time you have

$$\sin^2(\theta) = \frac{1}{2} - \frac{1}{2}\cos(2\theta)$$

4. MORE POLAR FUN

Video: Polar Integral

Example 3:

Evaluate the following, where D is the region in the first quadrant bounded by the circle $x^2 + y^2 = 9$, the x-axis, and the line y = x

$$\int \int_D x^2 dx dy$$

STEP 1: Function

$$f(x, y) = x^2 = (r \cos(\theta))^2 = r^2 \cos^2(\theta)$$

STEP 2: Inequalities

The circle $x^2 + y^2 = 9$ has radius 3 and also y = x corresponds to an angle of $\theta = \frac{\pi}{4}$ (45 degrees), hence D is:

$$\begin{cases} 0 \le r \le 3\\ 0 \le \theta \le \frac{\pi}{4} \end{cases}$$

STEP 3: Integrate

$$\int \int_{D} f(x,y) dx dy$$

= $\int_{0}^{\frac{\pi}{4}} \int_{0}^{3} r^{2} \cos^{2}(\theta) r dr d\theta$
= $\int_{0}^{\frac{\pi}{4}} \int_{0}^{3} r^{3} \cos^{2}(\theta) dr d\theta$
= $\left(\int_{0}^{3} r^{3} dr\right) \left(\int_{0}^{\frac{\pi}{4}} \cos^{2}(\theta) d\theta\right)$
= $\left[\frac{r^{4}}{4}\right]_{0}^{3} \left(\frac{\pi+2}{8}\right)$ (See Example above)
= $\frac{81}{4} \left(\frac{\pi+2}{8}\right)$
= $\frac{81}{32} (\pi+2)$

5. VOLUME BETWEEN SURFACES

Video: Volume of an ice cream cone

Since we worked so hard so far, let's treat ourselves with some ice cream and calculate the volume of an ice cream cone \odot

Example 4:

Find the volume of the region between

$$z = \sqrt{x^2 + y^2}$$
 and $z = \sqrt{8 - x^2 - y^2}$

STEP 1: Picture

$$z = \sqrt{x^2 + y^2} \Rightarrow z^2 = x^2 + y^2$$
 and $z \ge 0$, so an upper half-cone
 $z = \sqrt{8 - (x^2 + y^2)} \Rightarrow z^2 = 8 - (x^2 + y^2) \Rightarrow x^2 + y^2 + z^2 = 8 \Rightarrow$ Upper Hemisphere

This looks messy, so let's redraw it

Re-draw:

STEP 2: Just for areas in calculus, here the volume is given by the integral of the bigger function minus the smaller function:

Volume =
$$\int \int_D$$
 Bigger - Smaller $dxdy = \int \int_D \sqrt{8 - x^2 - y^2} - \sqrt{x^2 + y^2} dxdy$

STEP 3: Find D

Here D is shadow under the solid, which is given precisely by the **in-tersection** of the two surfaces (this is typical)

Intersection:

$$\sqrt{8 - x^2 - y^2} = \sqrt{x^2 + y^2}$$

$$8 - x^2 - y^2 = x^2 + y^2$$

$$8 = 2(x^2 + y^2)$$

$$x^2 + y^2 = 4$$

So D =Disk of radius 2

STEP 4: Integrate

Function:

$$\sqrt{8 - (x^2 + y^2)} - \sqrt{x^2 + y^2} = \sqrt{8 - r^2} - \sqrt{r^2} = \sqrt{8 - r^2} - r$$

Endpoints:

$$0 \le r \le 2$$
$$0 \le \theta \le 2\pi$$

Integral:

$$V = \int_0^{2\pi} \int_0^2 \left[\sqrt{8 - r^2} - r\right] r \, dr d\theta = 2\pi \int_0^2 \left(\sqrt{8 - r^2}\right) r - r^2 dr$$

$$2\pi \int_{0}^{2} \left(\sqrt{8-r^{2}}\right) r dr = 2\pi \int_{8}^{4} \sqrt{u} \left(-\frac{1}{2} du\right)$$

$$(u = 8 - r^{2}, du = -2r dr \Rightarrow r dr = -\frac{1}{2} du, u(0) = 8, u(2) = 4)$$

$$= 2\pi \int_{4}^{8} \frac{1}{2} u^{\frac{1}{2}} du$$

$$= 2\pi \left[\left(\frac{1}{2}\right) \left(\frac{2}{3}\right) u^{\frac{3}{2}}\right]_{4}^{8}$$

$$= 2\pi \left[\left(\frac{1}{3}\right) u \sqrt{u}\right]_{4}^{8}$$

$$= \frac{2\pi}{3} \left(8\sqrt{8} - 4\sqrt{4}\right)$$

$$= \frac{2\pi}{3} \left(8(2\sqrt{2}) - 4(2)\right)$$

$$= \frac{2\pi}{3} \left(16\sqrt{2} - 8\right)$$

$$= \left(\frac{32\pi}{3}\right) \sqrt{2} - \left(\frac{16\pi}{3}\right)$$

$$2\pi \int_{0}^{2} -r^{2} dr = 2\pi \left[-\frac{1}{3}r^{3}\right]_{0}^{2} = -\frac{2\pi}{3} \left(8 - 0\right) = -\frac{16\pi}{3}$$

$$V = \left(\frac{32\pi}{3}\right)\sqrt{2} - \frac{16\pi}{3} - \frac{16\pi}{3} = \left(\frac{32\pi}{3}\right)\sqrt{2} - \frac{32\pi}{3} = \frac{32\pi}{3}\left(\sqrt{2} - 1\right)$$

6. INTEGRAL OVER A RING

Video: Integral over a ring

As Beyoncé once said: If you like it then you should a put a ring on it

Example 5: (extra practice)

Find the average value of $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$ over the ring D between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ (where 0 < a < b)

Recall:

The average value of f(x, y) over D is

 $\frac{\int \int_D f(x,y) dx dy}{\text{Area of } D}$

STEP 1: Function:

$$f(x,y) = \tan^{-1}\left(\frac{y}{x}\right) = \theta$$
 (Much easier)

STEP 2: Find *D*

Inequalities:

$$a \le r \le b$$
$$0 \le \theta \le 2\pi$$

STEP 3: Integrate:

$$\int \int_{D} f(x, y) dx dy$$
$$= \int_{0}^{2\pi} \int_{a}^{b} \theta r \, dr d\theta$$
$$= \left(\int_{0}^{2\pi} \theta d\theta \right) \left(\int_{a}^{b} r dr \right)$$
$$= \left[\frac{\theta^{2}}{2} \right]_{0}^{2\pi} \left[\frac{r^{2}}{2} \right]_{a}^{b}$$

$$= \frac{(2\pi)^2}{2} \left(\frac{b^2}{2} - \frac{a^2}{2} \right)$$
$$= \frac{4\pi^2}{4} \left(b^2 - a^2 \right)$$
$$= \pi^2 \left(b^2 - a^2 \right)$$

STEP 4: Average

Since D is the difference between two disks, so the area of D is:

Area
$$(D) = \pi b^2 - \pi a^2 = \pi (b^2 - a^2)$$

Therefore the average is given by:

$$\frac{\text{Integral}}{\text{Area}} = \frac{\pi^2 \left(b^2 - a^2 \right)}{\pi \left(b^2 - a^2 \right)} = \frac{\pi^2}{\pi} = \pi$$

Note: Notice how this answer is independent of the a and b, WOW!!!

7. More Practice

STEP 1: Function:

$$f(x,y) = 9r$$

STEP 2: Find D

$$0 \le y \le \sqrt{2x - x^2}$$
$$0 \le x \le 2$$

$$y = \sqrt{2x - x^2} \Rightarrow y^2 = 2x - x^2$$
$$\Rightarrow x^2 - 2x + y^2 = 0$$
$$\Rightarrow (x - 1)^2 - 1 + y^2 = 0$$
$$\Rightarrow (x - 1)^2 + y^2 = 1$$

So D is an upper half circle centered at (1,0) and radius 1

STEP 3: Inequalities

In terms of polar coordinates, notice that

$$y^{2} = 2x - x^{2}$$

$$(r\sin(\theta))^{2} = 2r\cos(\theta) - (r\cos(\theta))^{2}$$

$$r^{2}\sin^{2}(\theta) = 2r\cos(\theta) - r^{2}\cos^{2}(\theta)$$

$$r^{2}\cos^{2}(\theta) + r^{2}\sin^{2}(\theta) = 2r\cos(\theta)$$

$$r^{2} = 2r\cos(\theta)$$

$$r = 2\cos(\theta)$$

Moreover, if $\theta = 0$, we get r = 2 (right endpoint of circle) and if $\theta = \frac{\pi}{2}$, we get r = 0 (left endpoint of circle), hence θ goes from 0 to $\frac{\pi}{2}$ (and not 0 to π , as one might at first expect), therefore our inequalities are:

$$0 \le r \le 2\cos(\theta)$$
$$0 \le \theta \le \frac{\pi}{2}$$

STEP 4: Integrate:

$$\int \int_{D} f(x,y) dx dy$$
$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos(\theta)} 9rr dr d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos(\theta)} 9r^{2} dr d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} [3r^{3}]_{0}^{2\cos(\theta)} d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} 3 (2\cos(\theta))^{3} d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} (3) 8 \cos^{3}(\theta) d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} 24 \cos^{2}(\theta) \cos(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} 24 \left(1 - \sin^{2}(\theta)\right) \cos(\theta) d\theta$$

($u = \cos(\theta), du = -\sin(\theta) d\theta, u(0) = 1, u\left(\frac{\pi}{2}\right) = 0$)
$$= \int_{1}^{0} 24 \left(1 - u^{2}\right) (-du)$$

$$= \int_{0}^{1} 24 - 24u^{2} du$$

$$= \left[24u^{2} - 8u^{4}\right]_{0}^{1}$$

$$= 24 - 8 - 0 + 0$$

$$= 16$$

8. Optional Appendix: $rdrd\theta$

Where does the r in $rdrd\theta$ come from? Here is a rough explanation.

Recall:

The length of an arc of radius L and angle α is $L\alpha$

Why? An angle of 2π corresponds to a length of $2\pi L$, so an angle of α corresponds to a length of αL

Suppose you start at a point (x, y)

Thinking in terms of polar, change the radius by a tiny amount dr and the angle by a tiny amount $d\theta$. Then you get the following wedge:

The radius of the (inside) wedge is L = r and the angle is $\alpha = d\theta$, so by the above formula the length of the (inside) wedge is $rd\theta$.

The thickness of the wedge is dr

Thinking of the wedge as a rectangle, the area becomes approximately

Area \approx Length \times Thickness $= rd\theta \times dr = r drd\theta$

Which is where the $rdrd\theta$ comes from

Of course, this needs a bit more justification: Why is this the same as dxdy? And why can you just say that the wedge is like a rectangle (which it technically isn't), but at least this explains roughly where the r comes from.

18