
LECTURE 24: RIEMANN INTEGRAL (I)

Welcome to the final chapter of our course! This chapter will be integral
to our analysis adventure, because it’s all about integration!

1. The Darboux Integral

Video: Darboux Integral

Goal: Find the area under the graph of f on [a, b]

Note: In this chapter, f is bounded, but not necessarily continuous

Note: Here we’ll take a slightly different approach from what you
learned in Calculus; this one is more suitable for theoretical purposes.

Date: Thursday, November 18, 2021.
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https://www.youtube.com/watch?v=BstJYwNmOyI
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STEP 1: Divide [a, b] into sub-pieces

Definition:

A partition of [a, b] is a collection of points of the form

P = {a = t0 < t1 < · · · < tn = b}

Warning: Here the points tk are not evenly spaced! This makes it
somewhat more flexible.

STEP 2: On each sub-piece [tk−1, tk], consider the rectangle with
height the biggest value of f and the smallest value of f
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Definition:

M(f, [tk−1, tk]) = sup { f(x) | x in [tk−1, tk] }
m(f, [tk−1, tk]) = inf { f(x) | x in [tk−1, tk] }

STEP 3: Sum up the areas of all the rectangles

Definition:

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk − tk−1) (Upper Sum)

L(f, P ) =
n∑

k=1

m(f, [tk−1, tk])(tk − tk−1) (Lower Sum)

U is an overestimate and L is an underestimate; the actual area lies in
between.
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Important Observation: If you increase the number of rectangles,
then U decreases, as in the following picture, where we use 3 vs 6
rectangles. Similarly, L increases

Because of this, it makes sense to consider:

Definition: (Upper/Lower Darboux Integral)

U(f) = inf { U(f, P ) | P is a partition of [a, b] } (Upper)

L(f) = sup { L(f, P ) | P is a partition of [a, b] } (Lower)

Even though it’s true that L(f) ≤ U(f), it is not always true that
L(f) = U(f). That said:

Definition:

We say f is integrable on [a, b] if L(f) = U(f). In that case, the
Darboux integral of f is∫ b

a

f(x)dx = L(f) = U(f)
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2. Examples
Non-Example: 1

Consider the following function on [0, 1]:

f(x) =

{
0 if x is rational

1 if x is irrational

Then M(f, [tk−1, tk]) = 1 but m(f, [tk−1, tk]) = 0, so

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk − tk−1)

=
n∑

k=1

tk − tk−1

=(t1 − t0) + (t2 − t1) + · · ·+ (tn − tn−1)

=tn − t0
=1− 0

=1
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Since U(f, P ) = 1 for all P , U(f) = inf { U(f, P ) | P } = 1

L(f, P ) =
n∑

k=1

m(f, [tk−1, tk])(tk − tk−1) =
n∑

k=1

0(tk − tk−1) = 0

Therefore L(f) = 0

Since L(f) ̸= U(f), f is not Darboux integrable

Note: This doesn’t mean that f is bad, it just means that our theory of
integration sucks! There is a more powerful theory called the Lebesgue
integral, which takes care precisely of functions like those

Example: 2

Consider f(x) = x2 on [0, 1]

STEP 1: Partition

P = {0 = t0 < t1 < · · · < tn = 1}

STEP 2: U(f, P )

Observation: Since x2 is increasing, notice that:

M(f, [tk−1, tk]) = f(tk) = (tk)
2 (Right Endpoint)
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U(f, P ) =
n∑

k=1

M(f, [tk−1, tk]) (tk − tk−1) =
n∑

k=1

(tk)
2 (tk − tk−1)

STEP 3: U(f)

Given n, let P be the evenly spaced Calculus partition with tk =
k
n :
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In that case tk − tk−1 =
1
n and

U(f, P ) =
n∑

k=1

(
k

n

)2(
1

n

)
=

n∑
k=1

k2

n3

=
1

n3

n∑
k=1

k2

=
1

n3

(
n(n+ 1)(2n+ 1)

6

)
(Will be given)

=
(n+ 1)(2n+ 1)

6n2

Upshot: Since U(f) is the inf over all partitions, we must have

U(f) ≤ U(f, P ) =
(n+ 1)(2n+ 1)

6n2

Therefore, taking the limit as n → ∞ of the right hand side1, we get
U(f) ≤ 2

6 =
1
3 , and so U(f) ≤ 1

3

1Here we used that if a ≤ sn, then so is a ≤ s, where s is the limit of sn
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STEP 4: L(f)

This is similar to the above, except that here m(f, [tk−1, tk]) = (tk−1)
2

(Left endpoint), and so, using sup we get L(f) ≥ 1
3 .

Since U(f) ≤ 1
3 ≤ L(f) and because L(f) ≤ U(f), we get L(f) =

U(f) = 1
3 . Hence f(x) = x2 is Darboux integrable and

∫ 1

0 x2dx = 1
3 .

3. L(f ) ≤ U(f )

For the rest of today, our goal is to show that L(f) ≤ U(f). Although
intuitively obvious, mathematically it’s not because L is the sup of inf,
whereas U is the inf of sup (like a minimax problem)

First, as remarked above, let’s show that increasing the number of
rectangles causes U to decrease:

Lemma 1

If P and Q are partitions of [a, b] with P ⊆ Q, then U(f,Q) ≤
U(f, P )

Note: Here Q is called a refinement of P
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Proof: For simplicity, assume Q has one more point than P . Other-
wise, just repeat this proof for the other points (or use induction)

Suppose P = {a = t0 < t1 < · · · < tn = b} as usual, and

Q = {a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b}

Q is basically P , but you insert an extra point u between tk−1 and tk

Then the main thing to notice is simply that the rectangle with base
[tk−1, tk] is larger than the rectangles with bases [tk−1, u] and [u, tk], as
in the following picture:
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M(f, [tk−1, tk])(tk−tk−1) ≥ M(f, [tk−1, u])(u−tk−1)+M(f, [u, tk])(tk−u)

U(f, P )

=M(f, [t0, t1])(t1 − t0) + · · ·+M(f, [tk−1, tk])(tk − tk−1) + · · ·
≥M(f, [t0, t1])(t1 − t0) + · · ·+M(f, [tk−1, u])(u− tk−1) +M(f, [u, tk])(tk − u) + · · ·
=U(f,Q)

Hence U(f, P ) ≥ U(f,Q) □

Note: Similarly, if P ⊆ Q, we have L(f, P ) ≤ L(f,Q), so we get

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P )

So the finer the partition, the better the approximation L(f,Q) and
U(f,Q). This should give you Pre-Ratio Test vibes ,

Next we’ll show that for all partitions, the upper sums are bigger than
the lower sums:

Lemma 2

For any partitions P and Q, we have L(f, P ) ≤ U(f,Q)
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Proof: Notice P ⊆ P ∪Q and Q ⊆ P ∪Q, and so by Lemma 1:

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q) □

Now we’re finally ready to prove our main result:

Theorem:

L(f) ≤ U(f)

Proof: For any partition P and Q, from Lemma 2, we have

L(f, P ) ≤ U(f,Q)

The left hand side is indep. of Q, so taking the inf over Q, we get

L(f, P ) ≤ inf { U(f,Q) | Q is a partition of [a, b] } =: U(f)

Therefore for every P , we have

L(f, P ) ≤ U(f)

Now taking the sup over all partitions P we get

sup { L(f, P ) | P is a partition of [a, b] } ≤ U(f)

That is L(f) ≤ U(f) □
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