LECTURE 24: RIEMANN INTEGRAL (I)

Welcome to the final chapter of our course! This chapter will be integral to our analysis adventure, because it's all about integration!

1. The Darboux Integral

Video: Darboux Integral

Goal: Find the area under the graph of f on $[a, b]$

Note: In this chapter, f is bounded, but not necessarily continuous
Note: Here we'll take a slightly different approach from what you learned in Calculus; this one is more suitable for theoretical purposes.

Date: Thursday, November 18, 2021.

STEP 1: Divide $[a, b]$ into sub-pieces

Definition:

A partition of $[a, b]$ is a collection of points of the form

$$
P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

Warning: Here the points t_{k} are not evenly spaced! This makes it somewhat more flexible.

STEP 2: On each sub-piece $\left[t_{k-1}, t_{k}\right]$, consider the rectangle with height the biggest value of f and the smallest value of f

Definition:

$$
\begin{aligned}
M\left(f,\left[t_{k-1}, t_{k}\right]\right) & =\sup \left\{f(x) \mid x \text { in }\left[t_{k-1}, t_{k}\right]\right\} \\
m\left(f,\left[t_{k-1}, t_{k}\right]\right) & =\inf \left\{f(x) \mid x \text { in }\left[t_{k-1}, t_{k}\right]\right\}
\end{aligned}
$$

STEP 3: Sum up the areas of all the rectangles

Definition:

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)(\text { Upper Sum }) \\
L(f, P) & =\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)(\text { Lower Sum })
\end{aligned}
$$

U is an overestimate and L is an underestimate; the actual area lies in between.

Important Observation: If you increase the number of rectangles, then U decreases, as in the following picture, where we use 3 vs 6 rectangles. Similarly, L increases

Because of this, it makes sense to consider:

Definition: (Upper/Lower Darboux Integral)

$$
\begin{aligned}
U(f) & =\inf \{U(f, P) \mid P \text { is a partition of }[a, b]\} \text { (Upper) } \\
L(f) & =\sup \{L(f, P) \mid P \text { is a partition of }[a, b]\} \text { (Lower) }
\end{aligned}
$$

Even though it's true that $L(f) \leq U(f)$, it is not always true that $L(f)=U(f)$. That said:

Definition:

We say f is integrable on $[a, b]$ if $L(f)=U(f)$. In that case, the Darboux integral of f is

$$
\int_{a}^{b} f(x) d x=L(f)=U(f)
$$

2. Examples

Non-Example: 1

Consider the following function on $[0,1]$:

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

Then $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=1$ but $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=0$, so

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n} t_{k}-t_{k-1} \\
& =\left(t_{1}-t_{0}\right)+\left(t_{2}-t_{1}\right)+\cdots+\left(t_{n}-t_{n-1}\right) \\
& =t_{n}-t_{0} \\
& =1-0 \\
& =1
\end{aligned}
$$

Since $U(f, P)=1$ for all $P, U(f)=\inf \{U(f, P) \mid P\}=1$

$$
L(f, P)=\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n} 0\left(t_{k}-t_{k-1}\right)=0
$$

Therefore $L(f)=0$
Since $L(f) \neq U(f), f$ is not Darboux integrable
Note: This doesn't mean that f is bad, it just means that our theory of integration sucks! There is a more powerful theory called the Lebesgue integral, which takes care precisely of functions like those

Example: 2

Consider $f(x)=x^{2}$ on $[0,1]$

STEP 1: Partition

$$
P=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}
$$

STEP 2: $U(f, P)$
Observation: Since x^{2} is increasing, notice that:

$$
\left.M\left(f,\left[t_{k-1}, t_{k}\right]\right)=f\left(t_{k}\right)=\left(t_{k}\right)^{2} \quad \text { (Right Endpoint }\right)
$$

$$
U(f, P)=\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n}\left(t_{k}\right)^{2}\left(t_{k}-t_{k-1}\right)
$$

STEP 3: $U(f)$
Given n, let P be the evenly spaced Calculus partition with $t_{k}=\frac{k}{n}$:

In that case $t_{k}-t_{k-1}=\frac{1}{n}$ and

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2}\left(\frac{1}{n}\right) \\
& =\sum_{k=1}^{n} \frac{k^{2}}{n^{3}} \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right) \quad(\text { Will be given }) \\
& =\frac{(n+1)(2 n+1)}{6 n^{2}}
\end{aligned}
$$

Upshot: Since $U(f)$ is the inf over all partitions, we must have

$$
U(f) \leq U(f, P)=\frac{(n+1)(2 n+1)}{6 n^{2}}
$$

Therefore, taking the limit as $n \rightarrow \infty$ of the right hand sid\& \square, we get $U(f) \leq \frac{2}{6}=\frac{1}{3}$, and so $U(f) \leq \frac{1}{3}$

[^0]
STEP 4: $L(f)$

This is similar to the above, except that here $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=\left(t_{k-1}\right)^{2}$ (Left endpoint), and so, using sup we get $L(f) \geq \frac{1}{3}$.

Since $U(f) \leq \frac{1}{3} \leq L(f)$ and because $L(f) \leq U(f)$, we get $L(f)=$ $U(f)=\frac{1}{3}$. Hence $f(x)=x^{2}$ is Darboux integrable and $\int_{0}^{1} x^{2} d x=\frac{1}{3}$.

$$
\text { 3. } L(f) \leq U(f)
$$

For the rest of today, our goal is to show that $L(f) \leq U(f)$. Although intuitively obvious, mathematically it's not because L is the sup of inf, whereas U is the \inf of sup (like a minimax problem)

First, as remarked above, let's show that increasing the number of rectangles causes U to decrease:

Lemma 1

If P and Q are partitions of $[a, b]$ with $P \subseteq Q$, then $U(f, Q) \leq$ $U(f, P)$

Note: Here Q is called a refinement of P

a

Proof: For simplicity, assume Q has one more point than P. Otherwise, just repeat this proof for the other points (or use induction)

Suppose $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ as usual, and

$$
\begin{aligned}
& Q=\left\{a=t_{0}<t_{1}<\cdots<t_{k-1}<u<t_{k}<\cdots<t_{n}=b\right\} \\
& t_{1}
\end{aligned}
$$

Q is basically P, but you insert an extra point u between t_{k-1} and t_{k}
Then the main thing to notice is simply that the rectangle with base $\left[t_{k-1}, t_{k}\right]$ is larger than the rectangles with bases $\left[t_{k-1}, u\right]$ and $\left[u, t_{k}\right]$, as in the following picture:

$$
\begin{aligned}
& M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right) \geq M\left(f,\left[t_{k-1}, u\right]\right)\left(u-t_{k-1}\right)+M\left(f,\left[u, t_{k}\right]\right)\left(t_{k}-u\right) \\
& \\
& \quad U(f, P) \\
& =M\left(f,\left[t_{0}, t_{1}\right]\right)\left(t_{1}-t_{0}\right)+\cdots+M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)+\cdots \\
& \geq M\left(f,\left[t_{0}, t_{1}\right]\right)\left(t_{1}-t_{0}\right)+\cdots+M\left(f,\left[t_{k-1}, u\right]\right)\left(u-t_{k-1}\right)+M\left(f,\left[u, t_{k}\right]\right)\left(t_{k}-u\right)+\cdots \\
& =U(f, Q)
\end{aligned}
$$

Hence $U(f, P) \geq U(f, Q)$
Note: Similarly, if $P \subseteq Q$, we have $L(f, P) \leq L(f, Q)$, so we get

$$
L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)
$$

So the finer the partition, the better the approximation $L(f, Q)$ and $U(f, Q)$. This should give you Pre-Ratio Test vibes $)_{-}$

Next we'll show that for all partitions, the upper sums are bigger than the lower sums:

Lemma 2

For any partitions P and Q, we have $L(f, P) \leq U(f, Q)$

Proof: Notice $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$, and so by Lemma 1:

$$
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)
$$

Now we're finally ready to prove our main result:

Theorem:

$$
L(f) \leq U(f)
$$

Proof: For any partition P and Q, from Lemma 2, we have

$$
L(f, P) \leq U(f, Q)
$$

The left hand side is indep. of Q, so taking the \inf over Q, we get

$$
L(f, P) \leq \inf \{U(f, Q) \mid Q \text { is a partition of }[a, b]\}=: U(f)
$$

Therefore for every P, we have

$$
L(f, P) \leq U(f)
$$

Now taking the sup over all partitions P we get

$$
\sup \{L(f, P) \mid P \text { is a partition of }[a, b]\} \leq U(f)
$$

That is $L(f) \leq U(f)$

[^0]: ${ }^{1}$ Here we used that if $a \leq s_{n}$, then so is $a \leq s$, where s is the limit of s_{n}

