### LECTURE 24: RIEMANN INTEGRAL (I)

Welcome to the final chapter of our course! This chapter will be *integral* to our analysis adventure, because it's all about integration!

1. The Darboux Integral

Video: Darboux Integral

**Goal:** Find the area under the graph of f on [a, b]



Note: In this chapter, f is bounded, but not necessarily continuous

**Note:** Here we'll take a slightly different approach from what you learned in Calculus; this one is more suitable for theoretical purposes.

Date: Thursday, November 18, 2021.

**STEP 1:** Divide [a, b] into sub-pieces



#### **Definition:**

A **partition** of [a, b] is a collection of points of the form

$$P = \{a = t_0 < t_1 < \dots < t_n = b\}$$

**Warning:** Here the points  $t_k$  are not evenly spaced! This makes it somewhat more flexible.

**STEP 2:** On each sub-piece  $[t_{k-1}, t_k]$ , consider the rectangle with height the biggest value of f and the smallest value of f





**STEP 3:** Sum up the areas of all the rectangles



Definition:  $U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1}) \text{ (Upper Sum)}$   $L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k])(t_k - t_{k-1}) \text{ (Lower Sum)}$ 

U is an overestimate and L is an underestimate; the actual area lies in between.

**Important Observation:** If you increase the number of rectangles, then U decreases, as in the following picture, where we use 3 vs 6 rectangles. Similarly, L increases



Because of this, it makes sense to consider:

Definition: (Upper/Lower Darboux Integral)  $U(f) = \inf \{ U(f, P) | P \text{ is a partition of } [a, b] \}$  (Upper)  $L(f) = \sup \{ L(f, P) | P \text{ is a partition of } [a, b] \}$  (Lower)

Even though it's true that  $L(f) \leq U(f)$ , it is not always true that L(f) = U(f). That said:

**Definition:** 

We say f is **integrable** on [a, b] if L(f) = U(f). In that case, the **Darboux integral** of f is

$$\int_{a}^{b} f(x)dx = L(f) = U(f)$$

4

### 2. EXAMPLES

Non-Example: 1 Consider the following function on [0, 1]:  $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$  f

Then  $M(f, [t_{k-1}, t_k]) = 1$  but  $m(f, [t_{k-1}, t_k]) = 0$ , so

$$U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1})$$
  
=  $\sum_{k=1}^{n} t_k - t_{k-1}$   
=  $(t_1 - t_0) + (t_2 - t_1) + \dots + (t_n - t_{n-1})$   
=  $t_n - t_0$   
=  $1 - 0$   
=  $1$ 

Since U(f, P) = 1 for all  $P, U(f) = \inf \{ U(f, P) \mid P \} = 1$ 

$$L(f,P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k])(t_k - t_{k-1}) = \sum_{k=1}^{n} 0(t_k - t_{k-1}) = 0$$

Therefore L(f) = 0

Since  $L(f) \neq U(f)$ , f is not Darboux integrable

Note: This doesn't mean that f is bad, it just means that our theory of integration sucks! There is a more powerful theory called the Lebesgue integral, which takes care precisely of functions like those

Consider 
$$f(x) = x^2$$
 on  $[0, 1]$ 

• •

**STEP 1:** Partition

Fvo

$$P = \{0 = t_0 < t_1 < \dots < t_n = 1\}$$

**STEP 2:** U(f, P)

**Observation:** Since  $x^2$  is increasing, notice that:

$$M(f, [t_{k-1}, t_k]) = f(t_k) = (t_k)^2$$
 (Right Endpoint)



$$U(f,P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k]) (t_k - t_{k-1}) = \sum_{k=1}^{n} (t_k)^2 (t_k - t_{k-1})$$

## **STEP 3:** U(f)

Given n, let P be the evenly spaced Calculus partition with  $t_k = \frac{k}{n}$ :



In that case  $t_k - t_{k-1} = \frac{1}{n}$  and

$$U(f, P) = \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2} \left(\frac{1}{n}\right)$$
  
=  $\sum_{k=1}^{n} \frac{k^{2}}{n^{3}}$   
=  $\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}$   
=  $\frac{1}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6}\right)$  (Will be given)  
=  $\frac{(n+1)(2n+1)}{6n^{2}}$ 

**Upshot:** Since U(f) is the inf over all partitions, we must have

$$U(f) \le U(f, P) = \frac{(n+1)(2n+1)}{6n^2}$$

Therefore, taking the limit as  $n \to \infty$  of the right hand side<sup>1</sup>, we get  $U(f) \leq \frac{2}{6} = \frac{1}{3}$ , and so  $U(f) \leq \frac{1}{3}$ 

<sup>&</sup>lt;sup>1</sup>Here we used that if  $a \leq s_n$ , then so is  $a \leq s$ , where s is the limit of  $s_n$ 

#### **STEP 4:** L(f)

This is similar to the above, except that here  $m(f, [t_{k-1}, t_k]) = (t_{k-1})^2$ (Left endpoint), and so, using sup we get  $L(f) \ge \frac{1}{3}$ .

Since  $U(f) \leq \frac{1}{3} \leq L(f)$  and because  $L(f) \leq U(f)$ , we get  $L(f) = U(f) = \frac{1}{3}$ . Hence  $f(x) = x^2$  is Darboux integrable and  $\int_0^1 x^2 dx = \frac{1}{3}$ .

# 3. $L(f) \leq U(f)$

For the rest of today, our goal is to show that  $L(f) \leq U(f)$ . Although intuitively obvious, mathematically it's not because L is the sup of inf, whereas U is the inf of sup (like a minimax problem)

First, as remarked above, let's show that increasing the number of rectangles causes U to decrease:

Lemma 1

If P and Q are partitions of [a,b] with  $P\subseteq Q,$  then  $U(f,Q)\leq U(f,P)$ 

Note: Here Q is called a **refinement** of P



**Proof:** For simplicity, assume Q has one more point than P. Otherwise, just repeat this proof for the other points (or use induction)

Suppose  $P = \{a = t_0 < t_1 < \dots < t_n = b\}$  as usual, and





Q is basically P, but you insert an extra point u between  $t_{k-1}$  and  $t_k$ 

Then the main thing to notice is simply that the rectangle with base  $[t_{k-1}, t_k]$  is larger than the rectangles with bases  $[t_{k-1}, u]$  and  $[u, t_k]$ , as in the following picture:



$$M(f, [t_{k-1}, t_k])(t_k - t_{k-1}) \ge M(f, [t_{k-1}, u])(u - t_{k-1}) + M(f, [u, t_k])(t_k - u)$$

 $U(f, P) = M(f, [t_0, t_1])(t_1 - t_0) + \dots + M(f, [t_{k-1}, t_k])(t_k - t_{k-1}) + \dots$   $\geq M(f, [t_0, t_1])(t_1 - t_0) + \dots + M(f, [t_{k-1}, u])(u - t_{k-1}) + M(f, [u, t_k])(t_k - u) + \dots$ = U(f, Q)

Hence  $U(f, P) \ge U(f, Q)$ 

**Note:** Similarly, if  $P \subseteq Q$ , we have  $L(f, P) \leq L(f, Q)$ , so we get

$$L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$$

So the finer the partition, the better the approximation L(f,Q) and U(f,Q). This should give you Pre-Ratio Test vibes  $\mathfrak{S}$ 

Next we'll show that for *all* partitions, the upper sums are bigger than the lower sums:

Lemma 2

For any partitions P and Q, we have  $L(f, P) \leq U(f, Q)$ 



**Proof:** Notice  $P \subseteq P \cup Q$  and  $Q \subseteq P \cup Q$ , and so by Lemma 1:

 $L(f,P) \leq L(f,P\cup Q) \leq U(f,P\cup Q) \leq U(f,Q) \quad \Box$ 

Now we're finally ready to prove our main result:

| Theorem: |                 |  |
|----------|-----------------|--|
|          | $L(f) \le U(f)$ |  |

**Proof:** For any partition P and Q, from Lemma 2, we have

```
L(f,P) \leq U(f,Q)
```

The left hand side is indep. of Q, so taking the inf over Q, we get

 $L(f, P) \le \inf \{ U(f, Q) \mid Q \text{ is a partition of } [a, b] \} =: U(f)$ 

Therefore for every P, we have

 $L(f, P) \le U(f)$ 

Now taking the sup over all partitions P we get

 $\sup \{ L(f, P) \mid P \text{ is a partition of } [a, b] \} \le U(f)$ That is  $L(f) \le U(f)$ 

12