LECTURE 25: TRIPLE INTEGRALS (I)

1. Gaussian Integral

Video: Gaussian Integral
Warning: This is the most exciting example of the course! Nothing in your life will be as exciting as this!

Recall:

$e^{-x^{2}}$ does not have an antiderivative, and yet...

Example 1:

Calculate $\int_{-\infty}^{\infty} e^{-x^{2}} d x$
Using multivariable calculus, we're going to do the impossible!!!
Note: This is sometimes called the Gaussian integral, due to Karl Friedrich Gauss

Date: Monday, October 25, 2021.

STEP 1: Trick: Consider:

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x=\int_{-\infty}^{\infty} e^{-y^{2}} d y>0
$$

(It doesn't matter which variable x or y we're using; potato potahto)
STEP 2: Multiply:

$$
\begin{aligned}
I^{2} & =(I)(I) \\
& =\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right) e^{-y^{2}} d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \\
& =2 \pi \int_{0}^{\infty} r e^{-r^{2}} d r \\
& =2 \pi\left[\left(-\frac{1}{2}\right) e^{-r^{2}}\right]_{r=0}^{r=\infty} \quad\left(\mathrm{u}-\mathrm{sub}: u=-r^{2}\right) \\
& =2 \pi\left(-\frac{1}{2} e^{-\infty}+\frac{1}{2} e^{0}\right) \\
& =2 \pi\left(0+\frac{1}{2}\right) \\
& =\pi
\end{aligned}
$$

STEP 3: Therefore $I^{2}=\pi$ and hence, since $I>0$, we get $I=\sqrt{\pi}$, and the answer is:

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Note: You can use the same technique to evaluate $\int_{-\infty}^{\infty} \sin \left(x^{2}\right) d x$, check out this video if you're interested:

Video: Integral $\sin \left(x^{2}\right)$ from $-\infty$ to ∞

Check out this playlist for 12 ways of evaluating the Gaussian integral:

$$
\text { Playlist: Gaussian Integral } 12 \text { Ways }
$$

2. Basic Example

Video: Triple Integrals

Welcome to triple integrals; It's triple the fun, but quadruple the pain!
Fortunately, the process is basically the same as doing double integrals.

Example 2:

Calculate the following integral, where E is the tetrahedron in the first octant bounded by $6 x+3 y+z=12$

$$
\iiint_{E} 6 z d x d y d z
$$

STEP 1: Picture

To draw the picture, again find the intercepts:
z-intercept: $6(0)+3(0)+z=12 \Rightarrow z=12$
y-intercept: $6(0)+3 y+0=12 \Rightarrow y=4$
x-intercept: $6 x+3(0)+0=12 \Rightarrow x=2$

STEP 2: Inequalities

The main difference is that before we had $z=\operatorname{Big}-$ Small, but now we have inequalities

$$
\begin{aligned}
\text { Small } & \leq z \leq \operatorname{Big} \\
0 & \leq z \leq 12-6 x-3 y
\end{aligned}
$$

STEP 3: Find D

$$
\begin{aligned}
\text { Small } & \leq y \leq \operatorname{Big} \\
0 & \leq y \leq 4-2 x \\
0 & \leq x \leq 2
\end{aligned}
$$

In summary, our inequalities are

$$
\left\{\begin{array}{l}
0 \leq z \leq 12-6 x-3 y \\
0 \leq y \leq 4-2 x \\
0 \leq x \leq 2
\end{array}\right.
$$

STEP 4: Integrate

$$
\begin{aligned}
& \iiint_{E} 6 z d x d y d z \\
= & \int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{12-6 x-3 y} 6 z d z d y d x \\
= & \int_{0}^{2} \int_{0}^{4-2 x}\left[3 z^{2}\right]_{z=0}^{z=12-6 x-3 y} d y d x \\
= & \int_{0}^{2} \int_{0}^{4-2 x} 3(12-6 x-3 y)^{2} d y d x \quad(\text { Double Integral) } \\
= & \int_{0}^{2}\left[(12-6 x-3 y)^{3}\left(\frac{1}{-3}\right)\right]_{y=0}^{y=4-2 x} d x \quad(u=12-6 x-3 y) \\
= & \int_{0}^{2}\left(-\frac{1}{3}\right)(12-6 x-3(4-2 x))^{3}+\frac{1}{3}(12-6 x-0)^{3} d x \\
= & \frac{1}{3} \int_{0}^{2}(12-6 x)^{3} d x \\
= & \left(\frac{1}{3}\right)\left[\left(\frac{1}{4}\right)(12-6 x)^{4}\left(\frac{1}{-6}\right)\right]_{0}^{2} \quad(u=12-6 x) \\
= & -\frac{1}{72}(12-6(2))^{4}+\frac{1}{72}(12)^{4} \\
= & \frac{(12)^{4}}{72} \\
= & 288
\end{aligned}
$$

\triangle In general, a triple integral does NOT calculate a volume. It calculates the hypervolume (4D volume) under the function $f(x, y, z)=6 z$ and over the 3D solid E. Think of your base as E and the height $6 z$ in the 4th dimension.

3. Mass

That said, there is a nice physical interpretation of triple integrals:

Fact:

If E is a solid with density $f(x, y, z)$, then the mass of E is

$$
\iiint_{E} f(x, y, z) d x d y d z
$$

Example 3:

Find the mass of the solid E with density $f(x, y, z)=2 z$ between the paraboloids

$$
z=x^{2}+y^{2}+2 \text { and } z=10-x^{2}-y^{2}
$$

In other words, we would like to calculate

$$
\iiint_{E} 2 z d x d y d z
$$

STEP 1: Picture:

STEP 2: Inequalities

$$
\begin{aligned}
\text { Small } & \leq z \leq \operatorname{Big} \\
x^{2}+y^{2}+2 & \leq z \leq 10-x^{2}-y^{2}
\end{aligned}
$$

STEP 3: Find D

As usual, D is given by the intersection of the two surfaces.

Intersection:

$$
\begin{aligned}
2+x^{2}+y^{2} & =10-x^{2}-y^{2} \\
2 x^{2}+2 y^{2} & =10-2=8 \\
x^{2}+y^{2} & =4
\end{aligned}
$$

Therefore D is a disk of radius 2 , and hence

$$
\begin{gathered}
0 \leq r \leq 2 \\
0 \leq \theta \leq 2 \pi
\end{gathered}
$$

STEP 4: Integrate

$$
\begin{aligned}
\text { Mass } & =\iint_{E} 2 z d x d y d z \\
& =\iint_{D} \int_{x^{2}+y^{2}+2}^{10-x^{2}-y^{2}} 2 z d z d x d y \\
& =\iint_{D}\left[z^{2}\right]_{z=x^{2}+y^{2}+2}^{z=-x^{2}-y^{2}} d x d y \\
& =\iint_{D}\left(10-x^{2}-y^{2}\right)^{2}-\left(x^{2}+y^{2}+2\right)^{2} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left[\left(10-r^{2}\right)^{2}-\left(r^{2}+2\right)^{2}\right] r d r d \theta \\
& =2 \pi \int_{0}^{2}\left[100-20 r^{2}+r^{4}-r^{4}-4 r^{2}-4\right] r d r \\
& =2 \pi \int_{0}^{2}\left[96-24 r^{2}\right] r d r \\
& =2 \pi \int_{0}^{2} 96 r-24 r^{3} d r \\
& =2 \pi\left[48 r^{2}-6 r^{4}\right]_{0}^{2} \\
& =2 \pi(48(4)-6(16)) \\
& =2 \pi(96) \\
& =192 \pi
\end{aligned}
$$

