
LECTURE 25: RIEMANN (II) + PROPERTIES (I)

1. The Riemann Integral

You may wonder: In what way is Darboux Integration similar or differ-
ent from what you learned in Calculus about Riemann Integrals? Even
though they look different, it turns out they are two different sides of
the same coin! For this, let me remind you how Riemann integrals
work:
STEP 1: Divide [a, b] into sub-pieces, so we define partitions as before

P = {a = t0 < t1 < · · · < tn = b}

STEP 2: On each sub-piece [tk−1, tk], choose a random point xk and
consider the rectangle with height f(xk)
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STEP 3: Sum up the areas of all the rectangles
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Definition:

A Riemann sum of f associated with the partition P is a sum
of the form

R(f, P ) =
n∑

k=1

f(xk) (tk − tk−1)

Where xk is a random point in [tk−1, tk]

Here R(f, P ) depends not only on P but also on the choice of xk, think
“random” sum

STEP 4:

In calculus, the next step was to take the limit as n → ∞. Here we
have to be more careful because the tk are not evenly spaced.

Definition:

The mesh of P is the length of the largest sub-piece, that is

|P | = max {|tk − tk−1| , k = 1, · · · , n}

Intuitively we want to say that:

lim
|P |→0

R(f, P ) =

∫ b

a

f(x)dx
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That is, as the partitions P get very fine, every Riemann sum converges

to some number called
∫ b

a f(x)dx. To make this more precise, we have
to use ϵ− δ

Definition:

f is Riemann Integrable on [a, b] if there is a number
∫ b

a f(x)dx
such that:

For all ϵ > 0 there is a δ > 0 such that for every partition P with
mesh < δ, and every Riemann sum R(f, P ), we have∣∣∣∣R(f, P )−

∫ b

a

f(x)dx

∣∣∣∣ < ϵ

If it exists, that number
∫ b

a f(x)dx is the Riemann Integral of f .

Notice how this is different from Darboux Integration. In Darboux, we
took the upper sum U(f) and lower sum L(f) said that f is Darboux
integrable if U(f) = L(f). Here we take random sums R(f, P ) and
say that the sums converge to a common value.

This makes the following result even more surprising:

Theorem:

f is Darboux integrable ⇔ f is Riemann integrable

In that case, the Darboux integral and the Riemann integral are the
same.
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Recall:

M(f, [tk−1, tk]) = sup { f(x) | x in [tk−1, tk] }

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk − tk−1)

U(f) = inf { U(f, P ) | P is a partition of [a, b] }

Idea of Proof: (The details are in the book)

(⇐) For any partition P , since L(f, P ) is an underestimate and U(f, P )
is an overestimate, we have L(f, P ) ≤ R(f, P ) ≤ U(f, P ) and since

L(f) = U(f) =
∫ b

a f(x)dx, intuitively forces all the Riemann sums

R(f, P ) to have the same limit
∫ b

a f(x)dx.

(⇒) Here you just choose xk to give you the upper sum U(f, P ), and
similarly you choose xk to give you the lower sum L(f, P ), so since
by assumption every Riemann sum R(f, P )is the same, this forces
L(f) = U(f)

2. Cauchy Criterion

In practice, it is a pain to calculate U(f) and L(f); it’s much easier
to deal with U(f, P ) and L(f, P ), since we can concretely calculate
them. Luckily there’s a way to talk about integrability without explic-
itly mentioning U(f).

The following should remind you of the Cauchy criterion for series:
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Cauchy Criterion for integrals:

f is integrable if and only if for all ϵ > 0 there is a partition P of
[a, b] such that

U(f, P )− L(f, P ) < ϵ

“No matter how small, we can always find a partition that makes the
difference (in blue) as small as we want”

Proof:

(⇒) Let ϵ > 0 be given, then and consider:

L(f)− ϵ

2
< L(f) = sup { L(f, P ) | P partition }
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By def of sup, there is a partition P1 such that L(f, P1) > L(f)− ϵ
2

Similarly there is a partition P2 such that U(f, P2) < U(f) + ϵ
2

Let P = P1∪P2 (finer), then L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2),
and therefore:

U(f, P )− L(f, P ) ≤U(f, P2)− L(f, P1)

<U(f) +
ϵ

2
−

(
L(f)− ϵ

2

)
=U(f)− L(f)︸ ︷︷ ︸

0

+ϵ

=ϵ

Here we used U(f) = L(f), since f is integrable ✓

(⇐) Let ϵ > 0 be given and let P be such that U(f, P )− L(f, P ) < ϵ.
Then by definition of U(f) as an inf, we get:

U(f) ≤U(f, P )

=U(f, P )−L(f, P ) + L(f, P )

<ϵ+ L(f, P )

≤ϵ+ L(f)

Hence U(f) < L(f) + ϵ for all ϵ > 0, hence U(f) ≤ L(f), but since
L(f) ≤ U(f) as well, we get U(f) = L(f) ✓ □
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3. Integrability and Monotonicity

Here are two nice applications of the Cauchy criterion. First, let’s show
that monotonic functions are integrable. Recall that monotonic means
either increasing or decreasing.

Theorem:

If f is monotonic on [a, b], then f is integrable on [a, b]

Proof: WLOG, assume f is strictly increasing, and so f(a) < f(b)

Main Observation: (just like last time with f(x) = x2). In that
case, we have

M(f, [tk−1, tk]) = f(tk−1) and m(f, [tk−1, tk]) = f(tk)

In order to show f is integrable, let’s use the Cauchy criterion above.
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Let ϵ > 0 be given, let δ = ϵ
f(b)−f(a) and and let P = {a = t0 < t1 < · · · < tn = b}

be any partition with mesh < δ, then:

U(f, P )− L(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk − tk−1)−
n∑

k=1

m(f, [tk−1, tk])(tk − tk−1)

=
n∑

k=1

f(tk)(tk − tk−1)−
n∑

k=1

f(tk−1)(tk − tk−1)

=
n∑

k=1

(f(tk)− f(tk−1)) (tk − tk−1)

<

n∑
k=1

(f(tk)− f(tk−1))
ϵ

f(b)− f(a)

=
ϵ

f(b)− f(a)

n∑
k=1

f(tk)− f(tk−1)

=

(
ϵ

f(b)− f(a)

)
(f(tn)− f(t0)) (Telescoping sum)

=

(
ϵ

f(b)− f(a)

)
(f(b)− f(a))

=ϵ✓

Hence f is integrable □

4. Continuity and Integrability

Here is a second application of the Cauchy criterion:



10 LECTURE 25: RIEMANN (II) + PROPERTIES (I)

Theorem:

If f is continuous on [a, b], then f is integrable on [a, b]

This is why in calculus you mainly integrate continuous functions.

Proof: Beautiful application of uniform continuity!

Since f is continuous on [a, b], it is uniformly continuous on [a, b]

Let ϵ > 0 be given, then there is δ > 0 such that for all x and y, if
|x− y| < δ, then |f(x)− f(y)| < ϵ

b−a

Let P = {a = t0 < t1 < · · · < tn = b} be any part. with mesh(P ) < δ.

Since f is continuous on each sub-piece [tk−1, tk], it attains a maximum
and a minimum for some xk and yk in [tk−1, tk]
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Therefore, by definition,

M(f, [tk−1, tk]) = f(xk) and m(f, [tk−1, tk]) = f(yk)

But then we get:

U(f, P )− L(f, P ) =
n∑

k=1

(M(f, [tk−1, tk])−m(f, [tk−1, tk])) (tk − tk−1)

=
n∑

k=1

(f(xk)− f(yk)) (tk − tk−1)

≤
n∑

k=1

|f(xk)− f(yk)| (tk − tk−1)

<

n∑
k=1

(
ϵ

b− a

)
(tk − tk−1) (Uniform Continuity)

=
ϵ

b− a

n∑
k=1

tk − tk−1

=

(
ϵ

b− a

)
(b− a)

=ϵ✓

Hence, by the Cauchy Criterion, f is integrable on [a, b] □

Notice the crucial role that uniform continuity played here, since we
don’t know where the xk and yk are (relative to [a, b])

Note: The same two results hold if f is only piecewise monotonic or
piecewise continuous, although with different proofs.

So far we’ve seen sufficient conditions for integrability, which might
lead you to ask: Is there a more general theorem that tells us exactly
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when a function is integrable? The answer is YES!!

Riemann-Lebesgue Theorem:

A bounded function f is integrable on [a, b] if and only if the set
of discontinuities of f has “measure 0”

Note: Do NOT use this theorem on the homework or exams, unless
you also provide me a proof ,

Here measure 0 means “negligible,” think “probability 0” So a finite
set or even Q has measure 0: If you pick a real number at random, the
probability that it is rational is 0.

Example 1:

Continuous functions are integrable (no discontinuities)

Example 2:

f(x) = sin
(
1
x

)
is integrable on [−1, 1] (only one discontinuity)
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Example 3:

The Popcorn function (from the section 17 homework) is inte-
grable since it is discontinuous only at the rational numbers
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