LECTURE 26: TRIPLE INTEGRALS (II)

1. Volumes

Video: Volume of Gouda Cheese

Even though in general a triple integral doesn't calculate a volume, there is one special case where it does:

Fact:

$$
\operatorname{Vol}(E)=\iiint_{E} 1 d x d y d z
$$

Note: Use this to calculate volumes, instead of \iint_{D} Big - Small

Example 1:

Find $\operatorname{Vol}(E)$ where E is the region enclosed by the surfaces

$$
\left\{\begin{array}{l}
y=x^{2} \\
z=1-y \\
z=0
\end{array}\right.
$$

STEP 1: Picture:

Date: Wednesday, October 27, 2021.

Suggestion: First start with $z=1-y$, which is a plane in the x direction (since x is missing). Then cut the plane along the parabola $y=x^{2}$.

Re-Draw:

STEP 2: Inequalities:

$$
\begin{aligned}
\text { Small } & \leq z \leq \operatorname{Big} \\
0 & \leq z \leq 1-y
\end{aligned}
$$

STEP 3: Find D
Note: Notice $z=0$ in D, so $z=1-y \Rightarrow 0=1-y \Rightarrow y=1$ (which is a straight line)

$$
\begin{aligned}
\text { Small } & \leq y \leq \operatorname{Big} \\
x^{2} & \leq y \leq 1
\end{aligned}
$$

Finally notice that $x^{2}=1 \Rightarrow x= \pm 1$, so

$$
-1 \leq x \leq 1
$$

Therefore our inequalities become

$$
\left\{\begin{aligned}
0 & \leq z \leq 1-y \\
x^{2} & \leq y \leq 1 \\
-1 & \leq x \leq 1
\end{aligned}\right.
$$

STEP 4: Integrate

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} 1 d x d y d z \\
& =\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} 1 d z d y d x \\
& =\int_{-1}^{1} \int_{x^{2}}^{1} 1-y d y d x \\
& =\int_{-1}^{1}\left[y-\frac{y^{2}}{2}\right]_{y=x^{2}}^{y=1} \\
& =\int_{-1}^{1} 1-\frac{1}{2}-x^{2}+\frac{x^{4}}{2} d x \\
& =\int_{-1}^{1} \frac{x^{4}}{2}-x^{2}+\frac{1}{2} d x \\
& =2 \int_{0}^{1} \frac{x^{4}}{2}-x^{2}+\frac{1}{2} d x \\
& =2\left[\frac{x^{5}}{10}-\frac{x^{3}}{3}+\frac{x}{2}\right]_{0}^{1} \\
& =\frac{8}{15}
\end{aligned}
$$

(The function is even)

Warning: For volume questions should never get 0 or a negative answer!

2. Other Directions

Video: Integral over Cannoli

From the creator of the band One Direction comes the spin-off called Other Directions

Just like double integrals where you can do horizontal regions, here you can also do triple integrals in different directions.

Example 2:

Calculate the following integral

$$
\iiint_{E} 3 d x d y d z
$$

Where E is the solid enclosed by the following surfaces:

$$
\left\{\begin{array}{r}
x^{2}+z^{2}=4 \\
y=-1 \\
y+z=4
\end{array}\right.
$$

STEP 1: Picture:

$x^{2}+z^{2}=4$ is a cylinder, but in the y-direction (because y is missing)
$y+z=4$ is a plane, but in the x-direction (to draw this, draw the line $y+z=4$ and move it along the x axis)

$$
y=-1 \quad y+z=4
$$

Re-Draw:

$$
y=-1 \quad y=4-z
$$

Here the region is in the y-direction (Book calls this a Type 2 region)

STEP 2: Inequalities:

Usually you do Small $\leq z \leq$ Big, but since everything is in the y-direction, this time it's:

$$
\begin{aligned}
\text { Left } & \leq y \leq \text { Right } \\
-1 & \leq y \leq 4-z
\end{aligned}
$$

Note: This makes sense if you tilt your head in the y-direction and see which function is above and below you!

STEP 3: Find D

Here D is the shadow to the left of E, which here is a disk of radius 2 in x and z

$$
\begin{array}{r}
0 \leq r \leq 2 \\
0 \leq \theta \leq 2 \pi
\end{array}
$$

Notice in particular here that $x=r \cos (\theta)$ and $z=r \sin (\theta)$

Therefore our inequalities are

$$
\left\{\begin{aligned}
-1 & \leq y \leq 4-z \\
0 & \leq r \leq 2 \\
0 & \leq \theta \leq 2 \pi
\end{aligned}\right.
$$

STEP 4: Integrate

$$
\begin{aligned}
\iiint_{E} 3 d x d y d z & =\iint_{D} \int_{-1}^{4-z} 3 d y d x d z \\
& =\iint_{D} 3((4-z)-(-1)) d x d z \\
& =\iint_{D} 3(5-z) d x d z \\
& =\iint_{D} 15-3 z d x d z \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(15-3 r \sin (\theta)) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 15 r-3 r^{2} \sin (\theta) d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{15}{2} r^{2}-r^{3} \sin (\theta)\right]_{r=0}^{r=2} d \theta \\
& =\int_{0}^{2 \pi} 30-8 \sin (\theta) d \theta \\
& =[30 \theta+8 \cos (\theta)]_{0}^{2 \pi} \\
& =30(2 \pi) \\
& =60 \pi
\end{aligned}
$$

Note: Sometimes your surface faces the x-direction, as in the following picture

Front

In that case, we have Back $\leq x \leq$ Front and D is the shadow behind the surface.

3. Averages

Similar to before, we can find the average value of a 3D function:
Note: For double integrals, we had to divide by Area (D), and now for triple integrals, we have to divide by the volume:

Definition:

The average value of $f(x, y, z)$ over a solid E is

$$
\frac{1}{\operatorname{Vol}(E)} \iiint_{E} f(x, y, z) d x d y d z
$$

Example 3:

Find the average value of $f(x, y, z)=x y z$ over the box

$$
E=[1,3] \times[2,5] \times[2,4]
$$

$$
\begin{aligned}
& \\
& \iint_{1} \int_{E} x y z d x d y d z \\
&= \int_{2}^{4} \int_{2}^{5} \int_{1}^{3} x y z d x d y d z \\
&=\left(\int_{1}^{3} x d x\right)\left(\int_{2}^{5} y d y\right)\left(\int_{2}^{4} z d z\right) \\
&= {\left[\frac{x^{2}}{2}\right]_{1}^{3}\left[\frac{y^{2}}{2}\right]_{2}^{5}\left[\frac{z^{2}}{2}\right]_{2}^{4} } \\
&=\left(\frac{9-1}{2}\right)\left(\frac{25-4}{2}\right)\left(\frac{16-4}{2}\right) \\
&=\left(\frac{8}{2}\right)\left(\frac{21}{2}\right)\left(\frac{12}{2}\right) \\
&= 21 \times 12 \\
&=252
\end{aligned}
$$

$$
\operatorname{Vol}(E)=(3-1) \times(5-2) \times(4-2)=2 \times 3 \times 2=12
$$

$$
\text { Average }=\frac{252}{12}=\frac{21 \times 12}{12}=21
$$

4. Intersection of Two CYLINDERS

Video: Volume of Intersection of two cylinders

Here is a fun challenge problem that math can sometimes solve things our eyes cannot see!

Example 4:

Find the volume of the intersection of the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$

STEP 1: Picture:

$x^{2}+y^{2}=1$ is a cylinder in the z-direction, and $x^{2}+z^{2}=1$ is a cylinder in the y-direction.

Problem: E is really hard to visualize! In that case: Believe in the math, not your eyes!

Note: If you're curious what it actually looks like, here's a picture.

STEP 2: Inequalities:

$$
\begin{gathered}
\text { Small } \leq z \leq \mathrm{Big} \\
z^{2}+x^{2}=1 \Rightarrow z^{2}=1-x^{2} \Rightarrow z= \pm \sqrt{1-x^{2}} \\
-\sqrt{1-x^{2}} \leq z \leq \sqrt{1-x^{2}}
\end{gathered}
$$

Note: Why use $z^{2}+x^{2}=1$? It's the only equation with z ! Also it makes sense in terms of the first picture and it's the direction that makes D the easiest.

STEP 3: Find D

Based on the pictures above, D is a disk of radius 1 (you can get that by setting $z=0$ in $x^{2}+y^{2}=1$)

STEP 4: Warning: You could use polar coordinates here, but if you do that (and I invite you to try it out), it becomes a HUGE mess, so instead go back to the bigger and smaller technique: ${ }^{T}$

$$
\begin{gathered}
\text { Small } \leq y \leq \operatorname{Big} \\
x^{2}+y^{2}=1 \Rightarrow y^{2}=1-x^{2} \Rightarrow-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}} \\
\left\{\begin{array}{r}
-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}} \\
-1 \leq x \leq 1
\end{array}\right.
\end{gathered}
$$

[^0]
STEP 5: Integrate:

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} 1 d x d y d z \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d z d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}}-\left(-\sqrt{1-x^{2}}\right) d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 2 \sqrt{1-x^{2}} d y d x \\
& =\int_{-1}^{1} 2 \sqrt{1-x^{2}}\left(\sqrt{1-x^{2}}-\left(-\sqrt{1-x^{2}}\right)\right) d x \\
& =\int_{-1}^{1}\left(2 \sqrt{1-x^{2}}\right)\left(2 \sqrt{1-x^{2}} d x\right) \\
& =\int_{-1}^{1} 4\left(1-x^{2}\right) d x \\
& =2 \int_{0}^{1} 4\left(1-x^{2}\right) d x \quad \text { (The function is even) } \\
& =\frac{16}{3}
\end{aligned}
$$

Note: If you're curious how to find the volume of the intersection of 3 cylinders, check out the following optional video:

Optional Video: Volume of Intersection of three cylinders

5. Changing the order of integration

Note: I will NOT ask about this on the quiz or exams, but here is how to change the order of integration in a triple integral.

Example 5:

Write the integral in the following order

$$
\int_{0}^{16} \int_{\sqrt{x}}^{4} \int_{0}^{4-y} f(x, y, z) d z d y d x=\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) d y d x d z
$$

STEP 1: Inequalities

$$
\left\{\begin{aligned}
0 & \leq z \leq 4-y \\
\sqrt{x} & \leq y \leq 4 \\
0 & \leq x \leq 16
\end{aligned}\right.
$$

This says that the bigger function is $z=4-y$ and the smaller is $z=0$
STEP 2: Draw D:

$$
\left\{\begin{aligned}
\sqrt{x} & \leq y \\
0 & \leq x
\end{aligned}\right.
$$

STEP 3: Draw E:

STEP 4: We want the integral in the form $d y d x d z$, so first we want y in terms of x and z, then x in terms of z, and then z constant

Based on the picture above, the left function is $y=\sqrt{x}$ and the right function is $z=4-y \Rightarrow y=4-z$

$$
\begin{aligned}
\text { Left } & \leq y \leq \text { Right } \\
\sqrt{x} & \leq y \leq 4-z
\end{aligned}
$$

To find D, which is the shadow to the left of the region, notice that if $z=4-y$ and $y=\sqrt{x}$, we get $z=4-\sqrt{x}$, which is precisely the curved part of D :

Finally, since we want y in terms of x and z, we need to write this as a horizontal region, and since $z=4-\sqrt{x} \Rightarrow x=(4-z)^{2}$, we get

$$
\begin{aligned}
& 0 \leq x \leq(4-z)^{2} \\
& 0 \leq z \leq 4
\end{aligned}
$$

STEP 5: Answer

$$
\left.\left.\begin{array}{rl}
\left\{\begin{array}{rl}
\sqrt{x} & \leq y \\
\leq 4-z \\
0 & \leq x
\end{array} \leq(4-z)^{2}\right. \\
0 & \leq z
\end{array}\right) 4 \begin{array}{l}
\end{array}\right\}
$$

Good luck doing this in all 6 different orders \mathcal{P}
It's not as bad as you think, since you already did the hardest part, which is drawing E.

[^0]: ${ }^{1}$ On the exam, I would give you a hint not to use polar coordinates

