
LECTURE 26: TRIPLE INTEGRALS (II)

1. Volumes

Video: Volume of Gouda Cheese

Even though in general a triple integral doesn’t calculate a volume,
there is one special case where it does:

Fact:

Vol(E) =

∫ ∫ ∫
E

1 dxdydz

Note: Use this to calculate volumes, instead of
∫ ∫

D Big − Small

Example 1:

Find Vol(E) where E is the region enclosed by the surfaces
y = x2

z = 1− y

z = 0

STEP 1: Picture:

Date: Wednesday, October 27, 2021.
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https://www.youtube.com/watch?v=6lOGUptNYdM
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Suggestion: First start with z = 1−y, which is a plane in the x direc-
tion (since x is missing). Then cut the plane along the parabola y = x2.

Re-Draw:
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STEP 2: Inequalities:

Small ≤ z ≤ Big

0 ≤ z ≤ 1− y

STEP 3: Find D

Note: Notice z = 0 in D, so z = 1 − y ⇒ 0 = 1 − y ⇒ y = 1 (which
is a straight line)

Small ≤y ≤ Big

x2 ≤y ≤ 1

Finally notice that x2 = 1 ⇒ x = ±1, so
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−1 ≤ x ≤ 1

Therefore our inequalities become
0 ≤z ≤ 1− y

x2 ≤y ≤ 1

−1 ≤x ≤ 1

STEP 4: Integrate

Vol(E) =

∫ ∫ ∫
E

1 dxdydz

=

∫ 1

−1

∫ 1

x2

∫ 1−y

0

1 dzdydx

=

∫ 1

−1

∫ 1

x2

1− y dydx

=

∫ 1

−1

[
y − y2

2

]y=1

y=x2

=

∫ 1

−1

1− 1

2
− x2 +

x4

2
dx

=

∫ 1

−1

x4

2
− x2 +

1

2
dx

=2

∫ 1

0

x4

2
− x2 +

1

2
dx (The function is even)

=2

[
x5

10
− x3

3
+

x

2

]1
0

=
8

15



LECTURE 26: TRIPLE INTEGRALS (II) 5

Warning: For volume questions should never get 0 or a negative an-
swer!

2. Other Directions

Video: Integral over Cannoli

From the creator of the band One Direction comes the spin-off called
Other Directions

Just like double integrals where you can do horizontal regions, here
you can also do triple integrals in different directions.

Example 2:

Calculate the following integral∫ ∫ ∫
E

3 dxdydz

Where E is the solid enclosed by the following surfaces:
x2 + z2 = 4

y = −1

y + z = 4

STEP 1: Picture:

x2 + z2 = 4 is a cylinder, but in the y-direction (because y is missing)

https://www.youtube.com/watch?v=FGkS1UTuisA
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y+ z = 4 is a plane, but in the x-direction (to draw this, draw the line
y + z = 4 and move it along the x axis)

Re-Draw:

Here the region is in the y−direction (Book calls this a Type 2 region)

STEP 2: Inequalities:
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Usually you do Small ≤ z ≤ Big, but since everything is in the
y−direction, this time it’s:

Left ≤y ≤ Right

−1 ≤y ≤ 4− z

Note: This makes sense if you tilt your head in the y−direction and
see which function is above and below you!

STEP 3: Find D

Here D is the shadow to the left of E, which here is a disk of radius 2
in x and z

0 ≤ r ≤ 2

0 ≤ θ ≤ 2π

Notice in particular here that x = r cos(θ) and z = r sin(θ)
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Therefore our inequalities are
−1 ≤y ≤ 4− z

0 ≤r ≤ 2

0 ≤θ ≤ 2π

STEP 4: Integrate∫ ∫ ∫
E

3 dxdydz =

∫ ∫
D

∫ 4−z

−1

3 dydxdz

=

∫ ∫
D

3 ((4− z)− (−1)) dxdz

=

∫ ∫
D

3 (5− z) dxdz

=

∫ ∫
D

15− 3z dxdz

=

∫ 2π

0

∫ 2

0

(15− 3r sin(θ)) rdrdθ

=

∫ 2π

0

∫ 2

0

15r − 3r2 sin(θ)drdθ

=

∫ 2π

0

[
15

2
r2 − r3 sin(θ)

]r=2

r=0

dθ

=

∫ 2π

0

30− 8 sin(θ)dθ

= [30θ + 8 cos(θ)]2π0
=30(2π)

=60π

Note: Sometimes your surface faces the x−direction, as in the follow-
ing picture
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In that case, we have Back ≤ x ≤ Front and D is the shadow be-
hind the surface.

3. Averages

Similar to before, we can find the average value of a 3D function:

Note: For double integrals, we had to divide by Area (D), and now
for triple integrals, we have to divide by the volume:

Definition:

The average value of f(x, y, z) over a solid E is

1

Vol(E)

∫ ∫ ∫
E

f(x, y, z)dxdydz
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Example 3:

Find the average value of f(x, y, z) = xyz over the box

E = [1, 3]× [2, 5]× [2, 4]

∫ ∫ ∫
E

xyzdxdydz

=

∫ 4

2

∫ 5

2

∫ 3

1

xyz dxdydz

=

(∫ 3

1

xdx

)(∫ 5

2

ydy

)(∫ 4

2

zdz

)
=

[
x2

2

]3
1

[
y2

2

]5
2

[
z2

2

]4
2

=

(
9− 1

2

)(
25− 4

2

)(
16− 4

2

)
=

(
8

2

)(
21

2

)(
12

2

)
=21× 12

=252
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Vol (E) = (3− 1)× (5− 2)× (4− 2) = 2× 3× 2 = 12

Average =
252

12
=

21× 12

12
= 21

4. Intersection of two cylinders

Video: Volume of Intersection of two cylinders

Here is a fun challenge problem that math can sometimes solve things
our eyes cannot see!

Example 4:

Find the volume of the intersection of the cylinders x2 + y2 = 1
and x2 + z2 = 1

STEP 1: Picture:

x2 + y2 = 1 is a cylinder in the z−direction, and x2 + z2 = 1 is a
cylinder in the y−direction.

https://www.youtube.com/watch?v=zOFDit9GYQg
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Problem: E is really hard to visualize! In that case: Believe in the
math, not your eyes!
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Note: If you’re curious what it actually looks like, here’s a picture.

STEP 2: Inequalities:

Small ≤ z ≤ Big

z2 + x2 = 1 ⇒ z2 = 1− x2 ⇒ z = ±
√
1− x2

−
√
1− x2 ≤ z ≤

√
1− x2

Note: Why use z2 + x2 = 1 ? It’s the only equation with z! Also
it makes sense in terms of the first picture and it’s the direction that
makes D the easiest.

STEP 3: Find D

Based on the pictures above, D is a disk of radius 1 (you can get that
by setting z = 0 in x2 + y2 = 1)
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STEP 4: Warning: You could use polar coordinates here, but if you
do that (and I invite you to try it out), it becomes a HUGE mess, so
instead go back to the bigger and smaller technique:1

Small ≤ y ≤ Big

x2 + y2 = 1 ⇒ y2 = 1− x2 ⇒ −
√

1− x2 ≤ y ≤
√
1− x2

{
−
√

1− x2 ≤ y ≤
√

1− x2

−1 ≤ x ≤ 1

1On the exam, I would give you a hint not to use polar coordinates
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STEP 5: Integrate:

Vol(E) =

∫ ∫ ∫
E

1 dxdydz

=

∫ 1

−1

∫ √
1−x2

−
√
1−x2

∫ √
1−x2

−
√
1−x2

dzdydx

=

∫ 1

−1

∫ √
1−x2

−
√
1−x2

√
1− x2 −

(
−
√

1− x2
)
dydx

=

∫ 1

−1

∫ √
1−x2

−
√
1−x2

2
√

1− x2 dydx

=

∫ 1

−1

2
√

1− x2
(√

1− x2 −
(
−
√

1− x2
))

dx

=

∫ 1

−1

(
2
√

1− x2
)(

2
√
1− x2dx

)
=

∫ 1

−1

4(1− x2)dx

=2

∫ 1

0

4
(
1− x2

)
dx (The function is even)

=
16

3

Note: If you’re curious how to find the volume of the intersection of
3 cylinders, check out the following optional video:

Optional Video: Volume of Intersection of three cylinders

5. Changing the order of integration

https://www.youtube.com/watch?v=zOFDit9GYQg
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Note: I will NOT ask about this on the quiz or exams, but here is
how to change the order of integration in a triple integral.

Example 5:

Write the integral in the following order∫ 16

0

∫ 4

√
x

∫ 4−y

0

f(x, y, z)dzdydx =

∫ ?

?

∫ ?

?

∫ ?

?

f(x, y, z)dydxdz

STEP 1: Inequalities


0 ≤z ≤ 4− y

√
x ≤y ≤ 4

0 ≤x ≤ 16

This says that the bigger function is z = 4−y and the smaller is z = 0

STEP 2: Draw D:

{√
x ≤y ≤ 4

0 ≤x ≤ 16
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STEP 3: Draw E:
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STEP 4: We want the integral in the form dydxdz, so first we want
y in terms of x and z, then x in terms of z, and then z constant

Based on the picture above, the left function is y =
√
x and the right

function is z = 4− y ⇒ y = 4− z

Left ≤y ≤ Right
√
x ≤y ≤ 4− z

To find D, which is the shadow to the left of the region, notice that
if z = 4 − y and y =

√
x, we get z = 4 −

√
x, which is precisely the

curved part of D:
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Finally, since we want y in terms of x and z, we need to write this as
a horizontal region, and since z = 4−

√
x ⇒ x = (4− z)2, we get

0 ≤x ≤ (4− z)2

0 ≤z ≤ 4

STEP 5: Answer 
√
x ≤y ≤ 4− z

0 ≤x ≤ (4− z)2

0 ≤z ≤ 4

∫ 16

0

∫ 4

√
x

∫ 4−y

0

f(x, y, z)dzdydx =

∫ 4

0

∫ (4−z)
2

0

∫ 4−z

√
x

f(x, y, z)dydxdz

Good luck doing this in all 6 different orders ,

It’s not as bad as you think, since you already did the hardest part,
which is drawing E.
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