
LECTURE 26: PROPERTIES OF THE INTEGRAL (II)

1. Recap

(1) Partition

P = {a = t0 < t1 < · · · < tn = b}

(2) Max on sub-piece
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M(f, [tk−1, tk]) = sup { f(x) | x in [tk−1, tk] }

(3) Upper Sum

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk − tk−1)

(4) Upper Integral

Adding rectangles causes U(f, P ) to decrease, and so:

U(f) = inf { U(f, P ) | P is a partition of [a, b] }

Similarly we have lower sum L(f, P ) and lower integral L(f)

(5) Darboux Integral

f is integrable on [a, b] if L(f) = U(f)

Finally, there is the Cauchy criterion, which is useful if you don’t know
what the integral is:

Cauchy Criterion for integrals:

f is integrable if and only if for all ϵ > 0 there is a partition P of
[a, b] such that

U(f, P )− L(f, P ) < ϵ

2. f + g and cf

Theorem:

If f is integrable on [a, b] then so is cf , and
∫ b

a cf = c
∫ b

a f
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Sketch of Proof:

If c > 0 this follows from M(cf, [tk−1, tk]) = cM(f, [tk−1, tk]), and tak-
ing sums we get U(cf, P ) = cU(f, P ), and taking inf we get U(cf) =
cU(f).

For c = −1 you use U(−f, P ) = −L(f, P ) and then take inf, compare
this with with inf(S) = − sup(−S)

Finally for c < 0 you use c = − (−c)︸︷︷︸
>0

and the above two steps □

Theorem:

If f and g are integrable on [a, b] then so is f + g, and∫ b

a

f + g =

∫ b

a

f +

∫ b

a

g

Proof:

STEP 1: The main idea is to use

sup {f(x) + g(x)} ≤ sup {f(x)}+ sup {g(x)}
By definition of M as a sup, this implies that

M(f + g, [tk−1, tk]) ≤ M(f, [tk−1, tk]) +M(g, [tk−1, tk])

And therefore taking sums, we get U(f + g, P ) ≤ U(f, P ) + U(g, P )

Similarly L(f + g, P ) ≥ L(f, P ) + L(g, P )

STEP 2: The idea now is to use the Cauchy criterion:
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Let ϵ > 0 be given, then since f and g are integrable, there are parti-
tions P1 and P2 such that

U(f, P1)− L(f, P1) <
ϵ

2
and U(g, P2)− L(g, P2) <

ϵ

2
We would like to use a common partition, so let P = P1 ∪ P2

Since P is finer than both P1 and P2, we have U(f, P ) ≤ U(f, P1) and
L(f, P ) ≥ L(f, P1)

Therefore: U(f, P )− L(f, P ) ≤ U(f, P1)− L(f, P1) <
ϵ

2
Similarly, we have U(g, P )− L(g, P ) < ϵ

2

STEP 3: From U(f + g, P ) ≤ U(f, P ) + U(g, P ) and L(f + g, P ) ≥
L(f, P ) + L(g, P ) we get:

U(f + g, P )− L(f + g, P ) ≤ (U(f, P ) + U(g, P ))− (L(f, P ) + L(g, P ))

=U(f, P )− L(f, P ) + U(g, P )− L(g, P )

<
ϵ

2
+

ϵ

2
(From STEP 2)

=ϵ
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Hence by the Cauchy Criterion, f + g is integrable on [a, b]

STEP 4: To evaluate the integral, we use:

∫ b

a

f + g =U(f + g)

≤U(f + g, P ) Since U(f + g) is the inf of U(f + g, P )

≤U(f, P ) + U(g, P ) (By STEP 1)

<L(f, P ) +
ϵ

2
+ L(g, P ) +

ϵ

2
(By STEP 2)

≤L(f) + L(g) + ϵ Since L(f) is the sup of L(f, P )

=

(∫ b

a

f +

∫ b

a

g

)
+ ϵ

So
∫ b

a f + g ≤
(∫ b

a f +
∫ b

a g
)
+ ϵ and since ϵ > 0 was arbitrary, we get∫ b

a f + g ≤
∫ b

a f +
∫ b

a g

Similarly, using L(f + g), we get
∫ b

a f + g ≥
∫ b

a f +
∫ b

a g

And therefore
∫ b

a f + g =
∫ b

a f +
∫ b

a g ✓ □

3. More Properties

Here are some properties of integrals frequently used in calculus:

Fact 1:

f(x) ≥ 0 for all x ⇒
∫ b

a

f ≥ 0
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Proof: By assumption f(x) ≥ 0 for all x in [a, b] and so for all par-
titions P , we have L(f, P ) ≥ 0. Taking the sup over all partitions P ,
we get L(f) ≥ 0 and so since f is integrable (by assumption), we get∫ b

a f = L(f) ≥ 0 □

From this it follows that if f ≤ g then
∫ b

a f ≤
∫ b

a g (simply by consid-
ering h = g − f)

Fact 2:

If f ≥ 0 is continuous and
∫ b

a f = 0, then f(x) = 0 for all x

Proof: Suppose f(x0) ̸= 0 for some x0, then WLOG, f(x0) > 0

Since f is continuous at x0 there is some δ > 0 such that |x− x0| < δ

then |f(x)− f(x0)| < f(x0)
2 , which implies that:
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−f(x0)

2
< f(x)− f(x0) <

f(x0)

2
⇒ f(x) > f(x0)−

f(x0)

2
=

f(x0)

2

In particular, on the interval (x0− δ, x0+ δ), we have f(x) > C, where

C = f(x0)
2 > 0 and so

∫ b

a

f ≥
∫ x0+δ

x0−δ

f >

∫ x0+δ

x0−δ

C = C(x0 + δ − (x0 − δ)) = C(2δ) > 0

Which contradicts
∫ b

a f = 0 ⇒⇐ □

A similar argument shows that if
∫ b

a fg = 0 for all g, then f = 0 ev-
erywhere. This is useful in more advanced analysis.

Fact 3: (Triangle Inequality)∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |

Proof-Sketch: This simply follows from − |f | ≤ f ≤ |f | and inte-
grating. Of course we would also need to show that |f | is integrable,
but this is an application of the Cauchy criterion, see book

Fact 4: ∫ b

a

f =

∫ c

a

f +

∫ b

c

f
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Proof-Sketch: See book, but basically you consider two partitions,
one on [a, c] and another on [c, b], take the union, and use the Cauchy
criterion, similar to what we did with f + g

4. Average Value

What does it mean to calculate the average grade in a class? You take
the sum of grades and then divide by the number of students. For
integrals it is the same thing:

Definition

The average value of f on [a, b] is
∫ b

a
f

b−a

Although in the discrete setting, the average value might not be at-
tained, for functions, it always is:
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MVT for Integrals

If f is continuous, then there is at least one c in (a, b) such that∫ b

a f

b− a
= f(c)

So, in the world of functions, if the average grade is 50, there is a stu-
dent who actually got 50. Or if your average speed was 65 mph, then
you actually drove 65 mph at some point

Proof: Here we’ll cheat a bit and use the Fundamental Theorem of
Calculus, which we’ll cover next time

Let F (x) =

∫ x

a

f(t)dt

(Which is defined since f is continuous)

Then by the regular MVT applied to F , for some c in (a, b), we have
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F (b)− F (a)

b− a
= F ′(c)

But F (b) =
∫ b

a f(t)dt, F (a) =
∫ a

a f(t)dt = 0 and by the FTC, F ′(x) =
f(x), and so F ′(c) = f(c)

Therefore the above becomes∫ b

a f(t)dt

b− a
= f(c)

Which is what we wanted to show □

5. Integrals and Limits

Finally, let’s answer a question that has haunted all of math-kind for
centuries: Is it ok to put the limit inside the integral? In other words,
it is true that

lim
n→∞

∫ b

a

fn
?
=

∫ b

a

lim
n→∞

fn
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The answer is NO, and here’s a really interesting counterexample

Non-Example:

Consider the following sequence of functions on [0, 1]

fn(x) =

{
n if 0 < x < 1

n

0 otherwise

Claim # 1

For every x, limn→∞ fn(x) = 0

Why? If x > 0, then if n is large enough, we eventually have 1
n ≤ x,

then by definition fn(x) = 0 for all n large, and so limn→∞ fn(x) =
0. And if x = 0, then fn(0) = 0 for all n by definition, and so
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limn→∞ fn(0) = 0

Claim # 2

limn→∞
∫ 1

0 fn ̸=
∫ 1

0 limn→∞ fn

Why? On the one hand, by the above,
∫ 1

0 limn→∞ fn(x) =
∫ 1

0 0 = 0.

On the other hand, fn is a rectangle with width 1
n and height n, so

∫ 1

0

fn(x)dx = n× 1

n
= 1

And so lim
n→∞

∫ 1

0

fn(x)dx = lim
n→∞

1 = 1 ̸= 0

The main problem here is that the fn blows up to ∞ at 0. It turns out
that if all the fn are bounded, then we’re ok

Bounded Convergence Theorem

If |fn| ≤ M for some M independent of n, then

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn

(Provided the limits exist)



LECTURE 26: PROPERTIES OF THE INTEGRAL (II) 13

Note: The book incorrectly calls this the Dominated Convergence
Theorem

The cool thing is that we can even replaceM by any integrable function
g, like e−x2

, provided that g doesn’t depend on M .
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