LECTURE 26: PROPERTIES OF THE INTEGRAL (II)

1. RECAP
(1) Partition
P:{a=t0<t1<---<tn:b}

a b
. o < L - —
to 1 4, i3 [ ty

(2) Max on sub-piece

M(f: [tk-lr tk])

L1 Ly

Date: Tuesday, November 30, 2021.
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M(f, [ter, te]) = sup { f(2) | @ in [t1, ] }

(3) Upper Sum

n

U(f,P) =D M(f,[tr1,t:]) (b — t51)

k=1

(4) Upper Integral

Adding rectangles causes U(f, P) to decrease, and so:

U(f)=inf{ U(f, P)| P is a partition of [a, b] }

Similarly we have lower sum L(f, P) and lower integral L(f)

(5) Darboux Integral
f is integrable on [a,b] if L(f) = U(f)

Finally, there is the Cauchy criterion, which is useful if you don’t know
what the integral is:

Cauchy Criterion for integrals:

f is integrable if and only if for all € > 0 there is a partition P of
[a, b] such that
U(f,P)—L(f,P) <€

2. f+ g AND cf

If f is integrable on [a, b] then so is cf, and fab af = cfabf
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Sketch of Proof:

If ¢ > 0 this follows from M (cf, [tx—1,tx]) = cM(f, [tk-1,tk]), and tak-
ing sums we get U(cf, P) = cU(f, P), and taking inf we get U(cf) =
cU(f).

For ¢ = —1 you use U(—f, P) = —L(f, P) and then take inf, compare
this with with inf(S) = —sup(—2S5)

Finally for ¢ < 0 you use ¢ = — (—c¢) and the above two steps O
~—

>0

If f and g are integrable on [a, b] then so is f + g, and

/abf+g=/abf+/abg

STEP 1: The main idea is to use

Proof:

sup {f(z) + g(z)} < sup {f(z)} + sup {g(z)}
By definition of M as a sup, this implies that

M(f +9, [tk—la tk]) < M(f? [tk—b tk]) + M(g’ [tk—btk])
And therefore taking sums, we get U(f + ¢, P) < U(f,P)+ U(g, P)

Similarly L(f + g, P) > L(f, P) + L(g, P)

STEP 2: The idea now is to use the Cauchy criterion:
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Let € > 0 be given, then since f and ¢ are integrable, there are parti-
tions P, and P such that

U(f, P) = L(f, P1) < 5 and Ulg, P2) = L{g, P) < 5

We would like to use a common partition, so let P = P, U P,

e

Py e
a P b

* @ - < s - s < ®

Since P is finer than both P, and P, we have U(f, P) < U(f, P;) and

L(f,py)  L(f,P) U(f,P) U(f,Py)
L(f.P) SU(f.P)) — L(f, P1) <
P) <

L(g, P)

9
STEP 3: From U(f + g, P) < U(f, P) + U(g, P) and L(f + g, P) >
L(f,P)+ L(g, P) we get:

Therefore: U(f, P)

DO ™

Similarly, we have U(g, P)

N

<§ + g (From STEP 2)

=€



LECTURE 26: PROPERTIES OF THE INTEGRAL (II) 5

Hence by the Cauchy Criterion, f + g is integrable on [a, b]

STEP 4: To evaluate the integral, we use:

f+g=U(f+9)

' <U(f+g,P) Since U(f + g) is the inf of U(f + g, P
<U(f,P)+Ul(g, P) (By STEP 1
<LUPy+j+u%m+§ (By STEP 2
<L(f) Since L(f) is the sup of L(f, P

(/f+/ )—i—e

So fff +9 < (f;f + f;g) + € and since € > 0 was arbitrary, we get
b b b
JoF+g< i f+ 19

Similarly, using L(f + g), we get f;f +g 2 f;f + f;g

And therefore f;erg:f;erf;g v O

3. MORE PROPERTIES

Here are some properties of integrals frequently used in calculus:

b
f(z) >0 for all = :>/ f>0
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Proof: By assumption f(z) > 0 for all z in [a,b] and so for all par-
titions P, we have L(f, P) > 0. Taking the sup over all partitions P,
we get L(f) > 0 and so since f is integrable (by assumption), we get

Pf=L(f)>0 0

From this it follows that if f < ¢ then f; f< fab g (simply by consid-
ering h = g — f)

If f > 0 is continuous and fabf =0, then f(z) =0 for all =

Proof: Suppose f(xg) # 0 for some g, then WLOG, f(x¢) > 0

f(x)
f(x0)

f(x0)/2

Since f is continuous at xy there is some § > 0 such that |z — x| <
then |f(x) — f(zo)| < @, which implies that:
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[ (20)
2

f(20)
2

f (o) _ f (o)
2 2

< f(x) = f(z0) < = f(z) > f(x0) —

In particular, on the interval (xy — §, 29+ ), we have f(z) > C, where
C = @ > () and so

b xo+6 To+6
/afz/wo_é f>/mo_5 O = Clxg+6 — (29— 8)) = C(26) > 0

Which contradicts fab f=0=<« O

A similar argument shows that if f; fg = 0 for all g, then f = 0 ev-
erywhere. This is useful in more advanced analysis.

Fact 3: (Triangle Inequality)

/abf|§/ab|f|

Proof-Sketch: This simply follows from —|f| < f < |f] and inte-
grating. Of course we would also need to show that |f| is integrable,
but this is an application of the Cauchy criterion, see book

/abfz/:er/cbf
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f

Proof-Sketch: See book, but basically you consider two partitions,
one on |a, ¢] and another on [c, b], take the union, and use the Cauchy
criterion, similar to what we did with f + ¢

4. AVERAGE VALUE

What does it mean to calculate the average grade in a class? You take
the sum of grades and then divide by the number of students. For
integrals it is the same thing:

The average value of f on [a,b] is

Although in the discrete setting, the average value might not be at-
tained, for functions, it always is:
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MVT for Integrals

If f is continuous, then there is at least one ¢ in (a, b) such that

b S

sol _ (o)

f(©) Average

So, in the world of functions, if the average grade is 50, there is a stu-
dent who actually got 50. Or if your average speed was 65 mph, then
you actually drove 65 mph at some point

Proof: Here we’ll cheat a bit and use the Fundamental Theorem of
Calculus, which we’ll cover next time

Let F(x / £t

(Which is defined since f is continuous)

Then by the regular MVT applied to F', for some ¢ in (a,b), we have
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F(b) — F(a)
b—a
But F(b) = f;f(t)dt, F(a) = [" f(t)dt = 0 and by the FTC, F'(z) =
f(x), and so F'(c) = f(c)

= F'(¢)

Therefore the above becomes

b
—fabf_(t;dt = f(e)

Which is what we wanted to show L]

5. INTEGRALS AND LIMITS

Finally, let’s answer a question that has haunted all of math-kind for
centuries: Is it ok to put the limit inside the integral? In other words,

it is true that
b B
lim / fn= / lim f,
n—oo a a n—oo
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The answer is NO, and here’s a really interesting counterexample

Non-Example:

Consider the following sequence of functions on [0, 1]

f(x){n if0<:1:<%

0 otherwise

n s fn

For every z, lim, ., fu(x) =0

Why? If x > 0, then if n is large enough, we eventually have % <z,
then by definition f,(z) = 0 for all n large, and so lim,,_, fu(z) =
0. And if z = 0, then f,(0) = 0 for all n by definition, and so
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limy, oo [y fo 7 [ Timy oo fi

Why? On the one hand, by the above, fol lim,, o0 fr(x) = fol 0=0.

On the other hand, f,, is a rectangle with width % and height n, so

! 1
/0 fn(a:)dx:nxgzl

1
And so lim fo(x)dr = lim 1 =1%#0

n—oo 0 n—oo

The main problem here is that the f,, blows up to oo at 0. It turns out
that if all the f,, are bounded, then we're ok

Bounded Convergence Theorem

If |f,] < M for some M independent of n, then

b b
lim / fn= / lim f,
n—oo a a n—0o0

(Provided the limits exist)
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fn

—M

Note: The book incorrectly calls this the Dominated Convergence
Theorem

The cool thing is that we can even replace M by any integrable function
g, like e‘xQ, provided that g doesn’t depend on M.
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