LECTURE 26: PROPERTIES OF THE INTEGRAL (II)

1. RECAP

 $P = \{a = t_0 < t_1 < \dots < t_n = b\}$

$a \qquad b \\ \overbrace{t_0 \quad t_1 \quad t_2 \quad t_3 \quad t_k \quad t_n}^{b}$

(2) Max on sub-piece

(1) **Partition**

Date: Tuesday, November 30, 2021.

$$M(f, [t_{k-1}, t_k]) = \sup \{ f(x) \mid x \text{ in } [t_{k-1}, t_k] \}$$

(3) Upper Sum

$$U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1})$$

(4) Upper Integral

Adding rectangles causes U(f, P) to *decrease*, and so:

$$U(f) = \inf \{ U(f, P) \mid P \text{ is a partition of } [a, b] \}$$

Similarly we have lower sum L(f, P) and lower integral L(f)

(5) Darboux Integral

f is **integrable** on [a, b] if L(f) = U(f)

Finally, there is the Cauchy criterion, which is useful if you don't know what the integral is:

Cauchy Criterion for integrals:

f is integrable if and only if for all $\epsilon>0$ there is a partition P of [a,b] such that

 $U(f, P) - L(f, P) < \epsilon$

2.
$$f + g$$
 and cf

Theorem:

If f is integrable on [a, b] then so is cf, and $\int_a^b cf = c \int_a^b f$

Sketch of Proof:

If c > 0 this follows from $M(cf, [t_{k-1}, t_k]) = cM(f, [t_{k-1}, t_k])$, and taking sums we get U(cf, P) = cU(f, P), and taking inf we get U(cf) = cU(f).

For c = -1 you use U(-f, P) = -L(f, P) and then take inf, compare this with $\inf(S) = -\sup(-S)$

Finally for c < 0 you use $c = -\underbrace{(-c)}_{>0}$ and the above two steps

Theorem:

If f and g are integrable on [a, b] then so is f + g, and

$$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$$

Proof:

STEP 1: The main idea is to use

$$\sup \{f(x) + g(x)\} \le \sup \{f(x)\} + \sup \{g(x)\}\$$

By definition of M as a sup, this implies that

 $M(f + g, [t_{k-1}, t_k]) \le M(f, [t_{k-1}, t_k]) + M(g, [t_{k-1}, t_k])$

And therefore taking sums, we get $U(f + g, P) \leq U(f, P) + U(g, P)$

Similarly $L(f + g, P) \ge L(f, P) + L(g, P)$

STEP 2: The idea now is to use the Cauchy criterion:

Let $\epsilon > 0$ be given, then since f and g are integrable, there are partitions P_1 and P_2 such that

$$U(f, P_1) - L(f, P_1) < \frac{\epsilon}{2}$$
 and $U(g, P_2) - L(g, P_2) < \frac{\epsilon}{2}$

We would like to use a common partition, so let $P = P_1 \cup P_2$

Since P is finer than both P_1 and P_2 , we have $U(f, P) \leq U(f, P_1)$ and $L(f, P) \geq L(f, P_1)$

 $L(f, P_1) \qquad L(f, P) \qquad U(f, P) \qquad U(f, P_1)$

Therefore: $U(f, P) - L(f, P) \le U(f, P_1) - L(f, P_1) < \frac{\epsilon}{2}$ Similarly, we have $U(g, P) - L(g, P) < \frac{\epsilon}{2}$

STEP 3: From $U(f + g, P) \le U(f, P) + U(g, P)$ and $L(f + g, P) \ge L(f, P) + L(g, P)$ we get:

$$U(f+g,P) - L(f+g,P) \le (U(f,P) + U(g,P)) - (L(f,P) + L(g,P))$$
$$= U(f,P) - L(f,P) + U(g,P) - L(g,P)$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} \qquad (\text{From STEP 2})$$
$$= \epsilon$$

Hence by the Cauchy Criterion, f + g is integrable on [a, b]

STEP 4: To evaluate the integral, we use:

$$\begin{split} \int_{a}^{b} f + g = U(f + g) \\ &\leq U(f + g, P) \\ &\leq U(f, P) + U(g, P) \\ &< L(f, P) + \frac{\epsilon}{2} + L(g, P) + \frac{\epsilon}{2} \\ &\leq L(f) + L(g) + \epsilon \\ &= \left(\int_{a}^{b} f + \int_{a}^{b} g\right) + \epsilon \end{split}$$
 Since $L(f)$ is the sup of $L(f, P)$

So $\int_{a}^{b} f + g \leq \left(\int_{a}^{b} f + \int_{a}^{b} g\right) + \epsilon$ and since $\epsilon > 0$ was arbitrary, we get $\int_{a}^{b} f + g \leq \int_{a}^{b} f + \int_{a}^{b} g$ Similarly, using L(f + g), we get $\int_{a}^{b} f + g \geq \int_{a}^{b} f + \int_{a}^{b} g$ And therefore $\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g \checkmark$

3. More Properties

Here are some properties of integrals frequently used in calculus:

Fact 1:

$$f(x) \ge 0 \text{ for all } x \implies \int_a^b f \ge 0$$

Proof: By assumption $f(x) \ge 0$ for all x in [a, b] and so for all partitions P, we have $L(f, P) \ge 0$. Taking the sup over all partitions P, we get $L(f) \ge 0$ and so since f is integrable (by assumption), we get $\int_a^b f = L(f) \ge 0$

From this it follows that if $f \leq g$ then $\int_a^b f \leq \int_a^b g$ (simply by considering h = g - f)

Fact 2:

If $f \ge 0$ is continuous and $\int_a^b f = 0$, then f(x) = 0 for all x

Proof: Suppose $f(x_0) \neq 0$ for some x_0 , then WLOG, $f(x_0) > 0$

Since f is continuous at x_0 there is some $\delta > 0$ such that $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$, which implies that:

$$-\frac{f(x_0)}{2} < f(x) - f(x_0) < \frac{f(x_0)}{2} \Rightarrow f(x) > f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2}$$

In particular, on the interval $(x_0 - \delta, x_0 + \delta)$, we have f(x) > C, where $C = \frac{f(x_0)}{2} > 0$ and so

$$\int_{a}^{b} f \ge \int_{x_0-\delta}^{x_0+\delta} f > \int_{x_0-\delta}^{x_0+\delta} C = C(x_0+\delta-(x_0-\delta)) = C(2\delta) > 0$$

Which contradicts $\int_a^b f = 0 \Rightarrow \Leftarrow$

A similar argument shows that if $\int_a^b fg = 0$ for all g, then f = 0 everywhere. This is useful in more advanced analysis.

Fact 3: (Triangle Inequality)

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$$

Proof-Sketch: This simply follows from $-|f| \leq f \leq |f|$ and integrating. Of course we would also need to show that |f| is integrable, but this is an application of the Cauchy criterion, see book

Fact 4:

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Proof-Sketch: See book, but basically you consider two partitions, one on [a, c] and another on [c, b], take the union, and use the Cauchy criterion, similar to what we did with f + g

4. Average Value

What does it mean to calculate the average grade in a class? You take the sum of grades and then divide by the number of students. For integrals it is the same thing:

Although in the discrete setting, the average value might not be attained, for functions, it always is:

MVT for Integrals

If f is continuous, then there is at least one c in (a, b) such that

$$\frac{\int_{a}^{b} f}{b-a} = f(c)$$

So, in the world of functions, if the average grade is 50, there is a student who actually got 50. Or if your average speed was 65 mph, then you actually drove 65 mph at some point

Proof: Here we'll cheat a bit and use the Fundamental Theorem of Calculus, which we'll cover next time

Let
$$F(x) = \int_{a}^{x} f(t)dt$$

(Which is defined since f is continuous)

Then by the regular MVT applied to F, for some c in (a, b), we have

$$\frac{F(b) - F(a)}{b - a} = F'(c)$$

But $F(b) = \int_a^b f(t)dt$, $F(a) = \int_a^a f(t)dt = 0$ and by the FTC, F'(x) = f(x), and so F'(c) = f(c)

Therefore the above becomes

$$\frac{\int_{a}^{b} f(t)dt}{b-a} = f(c)$$

Which is what we wanted to show

5. INTEGRALS AND LIMITS

Finally, let's answer a question that has haunted all of math-kind for centuries: Is it ok to put the limit inside the integral? In other words, it is true that

$$\lim_{n\to\infty}\int_a^b f_n \stackrel{?}{=} \int_a^b \lim_{n\to\infty} f_n$$

The answer is **NO**, and here's a really interesting counterexample

Non-Example:

Consider the following sequence of functions on [0, 1]

$$f_n(x) = \begin{cases} n & \text{if } 0 < x < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

Claim # 1 For every x, $\lim_{n\to\infty} f_n(x) = 0$

Why? If x > 0, then if *n* is large enough, we eventually have $\frac{1}{n} \leq x$, then by definition $f_n(x) = 0$ for all *n* large, and so $\lim_{n\to\infty} f_n(x) = 0$. And if x = 0, then $f_n(0) = 0$ for all *n* by definition, and so

 $\lim_{n \to \infty} f_n(0) = 0$

Claim # 2

$$\lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 \lim_{n \to \infty} f_n$$

Why? On the one hand, by the above, $\int_0^1 \lim_{n\to\infty} f_n(x) = \int_0^1 0 = 0$. On the other hand, f_n is a rectangle with width $\frac{1}{n}$ and height n, so

$$\int_0^1 f_n(x)dx = n \times \frac{1}{n} = 1$$

And so
$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} 1 = 1 \neq 0$$

The main problem here is that the f_n blows up to ∞ at 0. It turns out that if all the f_n are bounded, then we're ok

Bounded Convergence Theorem

If $|f_n| \leq M$ for some M independent of n, then

r

$$\lim_{a \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} \lim_{n \to \infty} f_{n}$$

(Provided the limits exist)

Note: The book incorrectly calls this the Dominated Convergence Theorem

The cool thing is that we can even replace M by any integrable function g, like e^{-x^2} , provided that g doesn't depend on M.