LECTURE 27: THE FUNDAMENTAL THEOREM OF CALCULUS

It's the most amazing of coincidences that the last topic of Advanced Calculus is about the Fundamental Theorem of Calculus! We will prove both versions.

$$
\text { 1. FTC } 2
$$

Video: FTC 2 Proof

FTC 2

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(b)
$$

That is, the integral of a function is the difference of antiderivatives
Note: The book proves it using Darboux integration, but it's actually more elegant to do it using Riemann integrals:

Recall: Riemann Integral: Given a partition, on each sub-piece $\left[t_{k-1}, t_{k}\right]$ you choose an arbitrary point x_{k}

Date: Thursday, December 2, 2021.

And you consider the Riemann (random) sum

$$
\sum_{k=1}^{n} f\left(x_{k}\right)\left(t_{k}-t_{k-1}\right)
$$

If f is integrable, then, no matter how we choose the x_{k}, this sum converges to $\int_{a}^{b} f(x) d x$ (as the partition P gets finer)

Proof: The idea is to choose a clever x_{k} that makes the Riemann sum equal to $f(b)-f(a)$

Let P be any partition of $\left[t_{k-1}, t_{k}\right]$
By the MVT, for every k, there is x_{k} in $\left[t_{k-1}, t_{k}\right]$ such that

$$
f^{\prime}\left(x_{k}\right)=\frac{f\left(t_{k}\right)-f\left(t_{k-1}\right)}{t_{k}-t_{k-1}}
$$

This implies

$$
f^{\prime}\left(x_{k}\right)\left(t_{k}-t_{k-1}\right)=f\left(t_{k}\right)-f\left(t_{k-1}\right)
$$

With this choice of x_{k} the Riemann sum of f^{\prime} becomes

$$
\begin{aligned}
\sum_{k=1}^{n} f^{\prime}\left(x_{k}\right)\left(t_{k}-t_{k-1}\right) & =\sum_{k=1}^{n} f\left(t_{k}\right)-f\left(t_{k-1}\right) \\
& =f\left(t_{1}\right)-f\left(t_{0}\right)+f\left(t_{2}\right)-f\left(t_{1}\right)+\cdots+f\left(t_{n}\right)-f\left(t_{n-1}\right) \\
& =f\left(t_{n}\right)-f\left(t_{0}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

Since this is true for any partition P, we get

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Note: This proof illustrates the beauty of Riemann integration: If a function is integrable, we can choose any x_{k} we want, it gives us the same answer (in the limit). Moreover, we didn't even have to take a limit, since the sum of $f(b)-f(a)$ for any partition.

2. Interlude: Integration by Parts

Before we prove the other FTC, let's prove the formula for integration by parts

Integration by Parts:

$$
\int_{a}^{b} f^{\prime}(x) g(x) d x=[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

Proof: It just follows from the product rule:

$$
\begin{aligned}
(f(x) g(x))^{\prime} & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
f^{\prime}(x) g(x) & =(f(x) g(x))^{\prime}-f(x) g^{\prime}(x) \\
\int_{a}^{b} f^{\prime}(x) g(x) d x & =\int_{a}^{b}(f(x) g(x))^{\prime} d x-\int_{a}^{b} f(x) g^{\prime}(x) d x \\
\int_{a}^{b} f^{\prime}(x) g(x) d x & =[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x
\end{aligned}
$$

Note: The following video gives a geometric proof of the IBP formula:

Video: IBP Intuition

3. FTC 1

Video: FTC 1 Proof

Now let's cover FTC 1, the one that says the derivative of the integral is the function itself.

FTC 1

Suppose f is continuous on $[a, b]$ and define

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then: $F^{\prime}(x)=f(x)$
In other words, $\left(\int_{a}^{x} f(t) d t\right)^{\prime}=f(x)$, the derivative of the integral is the function itself.

So F is the area under f from a to x, think water filling a tank from a to x :

Intuitively, the FTC follows from the following picture:

On the one hand, the change of F is $\Delta F=F(x+h)-F(x)$
On the other hand, the change in F is roughly equal to the area of the rectangle with base $[x, x+h]$ and height $f(x)$, which is $h f(x)$, and so:

$$
F(x+h)-F(x) \approx h f(x) \Rightarrow \frac{F(x+h)-F(x)}{h} \approx f(x)
$$

And taking the limit as $h \rightarrow 0$ we get $F^{\prime}(x)=f(x)$
We just need to make this idea rigorous
Proof: Beautiful application of uniform continuity (!)

STEP 1: Scratchwork

Our goal is to show that $F^{\prime}(x)=f(x)$, that is

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x) \\
\left|\frac{F(x+h)-F(x)}{h}-f(x)\right|=\left|\frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}-f(x)\right|=\left|\frac{\int_{x}^{x+h} f(t) d t}{h}-f(x)\right|
\end{gathered}
$$

Clever Observation: It would be nice if we could write $f(x)$ as an integral of the same form, but notice that:

$$
f(x)=\frac{\int_{x}^{x+h} f(x) d t}{h}
$$

Why? Since $f(x)$ doesn't depend on t, we get

$$
\int_{x}^{x+h} f(x) d t=f(x) \int_{x}^{x+h} 1 d t=f(x)(x+h-x)=f(x) h
$$

And solving for $f(x)$, we get the desired identity.
Continuing, we get:

$$
\begin{aligned}
\left|\frac{F(x+h)-F(x)}{h}-f(x)\right| & =\left|\frac{\int_{x}^{x+h} f(t) d t}{h}-\frac{\int_{x}^{x+h} f(x) d t}{h}\right| \\
& =\left|\frac{\int_{x}^{x+h} f(t)-f(x) d t}{h}\right| \\
& \leq \frac{1}{h} \int_{x}^{x+h}|f(t)-f(x)| d t
\end{aligned}
$$

(WLOG, assume $h>0$ here)
And this is where continuity kicks in!

STEP 2: Actual Proof

Let $\epsilon>0$ be given
Since f is continuous on $[a, b], f$ is uniformly continuous on $[a, b]$, and so there is $\delta>0$ such that if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.

With the same δ, if $0<h<\delta$ then $|f(t)-f(x)|<\epsilon$
Why? If t is in $[x, x+h]$ then $|x-t| \leq h<\delta$, and so $|f(t)-f(x)|<\epsilon$

δ

We can continue the calculation to get

$$
\begin{aligned}
\left|\frac{F(x+h)-F(x)}{h}-f(x)\right| & \leq \frac{1}{h} \int_{x}^{x+h}|f(t)-f(x)| d t \\
& <\frac{1}{h} \int_{x}^{x+h} \epsilon d t \\
& =\frac{\epsilon}{h}(x+h-x) \\
& =\epsilon\left(\frac{h}{h}\right) \\
& =\epsilon
\end{aligned}
$$

Hence if $0<h<\delta$, then $\left|\frac{F(x+h)-F(x)}{h}-f(x)\right|<\epsilon$
Therefore $\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x)$ that is $F^{\prime}(x)=f(x)$
(Technically we've only shown the limit as $h \rightarrow 0^{+}$, but the other limit is similar)
4. FTC 1+

What is f is not continuous, but merely integrable, like $f(x)=\sin \left(\frac{1}{x}\right)$? Then F might not be differentiable, but it is still continuous.

FTC 1+

If f is integrable on $[a, b]$, then F is uniformly continuous on $[a, b]$

Analogy: If you're driving like crazy, your distance never jumps but it may have kinks or jerks.

Proof: Much easier, actually! Since f is bounded, there is $M>0$ such that $|f(x)| \leq M$ for all x.

Let $\epsilon>0$ be given, and let $\delta=\frac{\epsilon}{M}$, then if $|x-y|<\delta$, then WLOG, $y>x$ so

$$
\begin{aligned}
|F(y)-F(x)| & =\left|\int_{x}^{y} f(t) d t\right| \\
& \leq \int_{x}^{y}|f(t)| d t \\
& \leq \int_{x}^{y} M d t \\
& =M(y-x) \\
& <M\left(\frac{\epsilon}{M}\right) \\
& =\epsilon \checkmark
\end{aligned}
$$

And so F is uniformly continuous on $[a, b]$

Finally, let's end this course with the integral version of the Chen Lu, which is u-sub:

u-sub:

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

This is sometimes written as $\int f(u(x))\left(\frac{d u}{d x}\right) d x=\int f(u) d u$
Proof: Consider $F(u(x))$ where F is an antiderivative of f, then by the Chen Lu:

$$
(F(u(x)))^{\prime}=F^{\prime}(u(x)) u^{\prime}(x)=f(u(x)) u^{\prime}(x)
$$

And integrating this from a to b, we get:

$$
\begin{aligned}
\int_{a}^{b}(F(u(x)))^{\prime} d x & =\int_{a}^{b} f(u(x)) u^{\prime}(x) d x \\
F(u(b))-F(u(a)) & =\int_{a}^{b} f(u(x)) u^{\prime}(x) d x \\
{[F(x)]_{u(a)}^{u(b)} } & =\int_{a}^{b} f(u(x)) u^{\prime}(x) d x \\
\int_{u(a)}^{u(b)} f(u) d u & =\int_{a}^{b} f(u(x)) u^{\prime}(x) d x
\end{aligned}
$$

In the last step we used that F is an antiderivative of f, so $\int f=F$

6. Two Fun Examples

Finally, to end on a high note, let me show you two cool integration tricks, starting with integrals of inverse functions:

Example 1:

$$
\int_{0}^{\frac{1}{2}} \sin ^{-1}(x) d x
$$

(1) $x=\sin (u)$
(2) $d x=\cos (u) d u$
(3) $0=\sin (u) \Rightarrow u=0$ and $\frac{1}{2}=\sin (u) \Rightarrow u=\frac{\pi}{6}$
(4)

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} \sin ^{-1}(x) d x & =\int_{0}^{\frac{\pi}{6}} \sin ^{-1}(\sin (u)) \cos (u) d u \\
& =\int_{0}^{\frac{\pi}{6}} u \cos (u) d u \\
& =[u \sin (u)]_{0}^{\frac{\pi}{6}}-\int_{0}^{\frac{\pi}{6}} \sin (u) d u \quad(\text { IBP } \\
& =\frac{\pi}{6} \sin \left(\frac{\pi}{6}\right)-0 \sin (0)-\int_{0}^{\frac{\pi}{6}} \sin (u) d u \\
& =\frac{\pi}{6}\left(\frac{1}{2}\right)+[\cos (u)]_{0}^{\frac{\pi}{6}} \\
& =\frac{\pi}{12}+\cos \left(\frac{\pi}{6}\right)-\cos (0) \\
& =\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1
\end{aligned}
$$

Notice that in the process we got

$$
\int_{0}^{\frac{1}{2}} \sin ^{-1}(x) d x=\frac{\pi}{6} \sin \left(\frac{\pi}{6}\right)-0 \sin (0)-\int_{0}^{\frac{\pi}{6}} \sin (u) d u
$$

Using the same technique, this can be generalized as follows:

Fact

$$
\int_{f(a)}^{f(b)} f^{-1}(x) d x=b f(b)-a f(a)-\int_{a}^{b} f(u) d u
$$

Or, in other words:

$$
\int_{a}^{b} f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(y) d y=b f(b)-a f(a)
$$

This has a nice graphical interpretation: The sum of the areas under the graph of f and to the left of the graph of f (in yellow below) equals to the difference of the areas of the rectangles $b f(b)$ and $a f(a)$:

Finally, let me show you one of my favorite integration tricks:

Example 2:

$$
\int_{0}^{1} x \tan ^{-1}(x) d x
$$

Usually you would integrate this by parts, using $v=\tan ^{-1}(x), d v=$ $\frac{1}{x^{2}+1}, d u=x$ and $u=\frac{x^{2}}{2}$, but that gives a nasty integral!

Trick: remember that you can add a constant to any antiderivative and still get an antiderivative! So instead of doing $u=\frac{x^{2}}{2}$, try out $u=\frac{x^{2}+1}{2}$, then you get:

$$
\begin{aligned}
\int_{0}^{1} x \tan ^{-1}(x) d x & =\left[\left(\frac{x^{2}+1}{2}\right) \tan ^{-1}(x)\right]_{0}^{1}-\int_{0}^{1}\left(\frac{x^{2}+1}{2}\right)\left(\frac{1}{x^{2}+1}\right) d x \\
& =\left(\frac{2}{2}\right) \tan ^{-1}(1)-\frac{1}{2} \tan ^{-1}(0)-\int_{0}^{1} \frac{1}{2} d x \\
& =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

And with this, we are officially done with the course! Next time we'll have a semester in review \odot

