LECTURE 28: SPHERICAL COORDINATES (I)

Today is all about a really useful coordinate system that simplifies integrals tremendously: Spherical Coordinates.

1. Spherical Coordinates

Idea: Represent (x, y, z) as (ρ, θ, ϕ), where:
(1) $\rho=$ distance from 0 to (x, y, z) (RHOdius)
(2) $\theta=$ angle between (x, y) and x-axis (THOrizontal)
(3) $\phi=$ angle between (x, y, z) and z-axis (PHErtical)

Date: Monday, November 1, 2021.

Mnemonic: θ is 0 with a horizontal line (so horizontal) and ϕ is 0 with a vertical line (so vertical)

Constraints:

$$
\begin{aligned}
\rho & \geq 0 \\
0 & \leq \theta \leq 2 \pi \\
\leqq 0 & \leq \phi \leq \pi
\end{aligned}
$$

(The reason for the last one is because we can't go more south than the South pole)

Most important property:

$$
x^{2}+y^{2}+z^{2}=\rho^{2}
$$

So spherical is really the natural analog of polar but in 3 dimensions!

Example 1:

Plot the following points:
(a) $\left(1, \frac{\pi}{4}, \frac{\pi}{6}\right)$

Think like a robot! You move horizontally right by $\frac{\pi}{4}$ (from the x-axis) and then you move vertically down by $\frac{\pi}{6}$ (from the z-axis)

(b) $\left(2, \frac{7 \pi}{4}, \frac{\pi}{4}\right)$
(Remember $\frac{7 \pi}{4}$ is the same as $\frac{-\pi}{4}$)

(c) $\left(2, \frac{\pi}{3}, \frac{2 \pi}{3}\right)$

Here you're moving below the $x y$-plane

Just like for cylindrical coordinates, this is useful because a lot of familiar objects can be written elegantly in terms of spherical coordinates.

Example 2:

Sketch the following surfaces
(a) $\rho=3$

$$
\sqrt{x^{2}+y^{2}+z^{2}}=3 \Rightarrow x^{2}+y^{2}+z^{2}=9 \text { Sphere }
$$

(b) $\phi=\frac{\pi}{6}$

It's an upper-cone with vertical angle $\phi=\frac{\pi}{6}=30^{\circ}$

Note: The lower cone would be $\phi=\frac{5 \pi}{6}=150^{\circ}$

2. Derivation of Spherical Coordinates

Video: Derivation of Spherical Coordinates

Goal: Find equations for x, y, z in terms of ρ, θ, ϕ (similar to $x=$ $r \cos (\theta)$ for polar coordinates)

STEP 1: Picture:

Here r is the distance between O and (x, y), just like for cylindrical coordinates

STEP 2: Focus on the following triangle:

By SOHCAHTOA, we have:

$$
\cos (\phi)=\frac{z}{\rho} \Rightarrow z=\rho \cos (\phi)
$$

And also:

$$
\sin (\phi)=\frac{r}{\rho} \Rightarrow r=\rho \sin (\phi)
$$

STEP 3: The rest is just polar coordinates and the formula for r above:

$$
\begin{aligned}
& x=r \cos (\theta) \Rightarrow x=\rho \sin (\phi) \cos (\theta) \\
& y=r \sin (\theta) \Rightarrow y=\rho \sin (\phi) \sin (\theta)
\end{aligned}
$$

Spherical Coordinates:

$$
\left\{\begin{array}{l}
x=\rho \sin (\phi) \cos (\theta) \\
y=\rho \sin (\phi) \sin (\theta) \\
z=\rho \cos (\phi)
\end{array}\right.
$$

Mnemonic: For $z=\rho \cos (\phi)$, use the $z-\phi-\rho$ triangle above and for x and y, use $x=r \cos (\theta)$ and $y=r \sin (\theta)$

3. Integrals with Spherical Coordinates

Spherical coordinates are literally the Bazooka of math; they allow us to simplify complicated integrals like crazy!

Rule of Thumb

Spherical is great for spheres and cones.

Example 3:

Find the volume of a ball of radius R.

STEP 1:

$$
V=\iiint_{E} 1 d x d y d z \quad E=\text { Ball of radius } R
$$

STEP 2: Picture:

STEP 3: Inequalities: No restrictions on θ and ϕ, so it's

$$
\left\{\begin{array}{c}
0 \leq \rho \leq R \\
0 \leq \theta \leq 2 \pi \\
0 \leq \phi \leq \pi
\end{array}\right.
$$

STEP 4: Integrate

Fact:

$$
\iiint_{E} f(x, y, z) d x d y d z=\iiint_{E} f(\rho, \theta, \phi) \rho^{2} \sin (\phi) d \rho d \theta d \phi
$$

$$
\begin{aligned}
& \iiint_{E} 1 d x d y d z \\
= & \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R} \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
= & \left(\int_{0}^{R} \rho^{2} d \rho\right)\left(\int_{0}^{\pi} \sin (\phi) d \phi\right)\left(\int_{0}^{2 \pi} 1 d \theta\right) \\
= & \frac{R^{3}}{3}(2)(2 \pi) \\
= & \frac{4}{3} \pi R^{3}
\end{aligned}
$$

Note: Where does the $\rho^{2} \sin (\phi)$ come from? Roughly speaking, before we had $r d r d \theta$ but now we have $\rho r d r d \theta d \phi$, and

$$
\rho r=\rho(\rho \sin (\phi))=\rho^{2} \sin (\phi)
$$

If you want a more geometric explanation, please see the optional appendix at the end.

4. Ice Cream Cone (Again!)

Video: Spherical Coordinates and Ice Cream Cones

To really see how amazing spherical coordinates are, another ice cream cone example, to see how much easier this becomes!

Example 4:

Calculate the following integral where E is the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $z=\sqrt{4-x^{2}-y^{2}}$

$$
\iiint_{E} z d x d y d z
$$

STEP 1: Picture:

STEP 2: Inequalities:

$$
\begin{aligned}
& z=\sqrt{x^{2}+y^{2}}=r \Rightarrow \rho \cos (\phi)=\rho \sin (\phi) \Rightarrow \cos (\phi)=\sin (\phi) \Rightarrow \phi=\frac{\pi}{4} \\
& \left\{\begin{array}{c}
0 \leq \rho \leq 2 \\
0 \leq \theta \leq 2 \pi \\
0 \leq \phi \leq \frac{\pi}{4}
\end{array}\right.
\end{aligned}
$$

STEP 3: Integrate:

$$
\begin{aligned}
& \iiint_{E} z d x d y d z \\
= & \int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{2} \rho \cos (\phi) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
= & 2 \pi\left(\int_{0}^{2} \rho^{3} d \rho\right)\left(\int_{0}^{\frac{\pi}{4}} \sin (\phi) \cos (\phi) d \phi\right) \\
& \left(u=\sin (\phi), d u=\cos (\phi) d \phi, u(0)=0, u\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\right) \\
= & 2 \pi\left(\frac{2^{4}}{4}\right)\left(\int_{0}^{\frac{1}{\sqrt{2}}} u d u\right) \\
= & 2 \pi(4)\left[\frac{u^{2}}{2}\right]_{0}^{\frac{1}{\sqrt{2}}} \\
= & 8 \pi\left(\frac{1}{4}\right) \\
= & 2 \pi
\end{aligned}
$$

Note: For more practice, check out the following video:
Video: Volume of an Ice Cream Cone

5. More Integration Practice

Example 5: (extra practice)

Calculate the following integral where E is the solid between $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4, \phi=\frac{\pi}{6} \phi=\frac{\pi}{3}$

$$
\iiint_{E} \sqrt{x^{2}+y^{2}} d x d y d z
$$

STEP 1: Picture:

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=1 \Rightarrow \rho=1 \\
& x^{2}+y^{2}+z^{2}=4 \Rightarrow \rho=2 \\
& \phi=\frac{\pi}{6} \text { and } \phi=\frac{\pi}{3} \text { are cones }
\end{aligned}
$$

STEP 2: Inequalities:

$$
\left\{\begin{array}{c}
1 \leq \rho \leq 2 \\
0 \leq \theta \leq 2 \pi \\
\frac{\pi}{6} \leq \phi \leq \frac{\pi}{3}
\end{array}\right.
$$

STEP 3: Integrate:

$$
\begin{aligned}
& \iint_{E} \int_{x^{2}+y^{2}} d x d y d z \\
= & \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\
= & 2 \pi\left(\int_{1}^{2 \pi} \int_{1}^{2} \rho \sin (\phi) \rho^{2} \sin (\phi) d \rho d \theta d \phi\right. \\
= & 2 \pi\left[\frac{\rho^{4}}{4}\right]_{1}^{2}\left(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin ^{2}(\phi) d \phi\right) \\
= & 2 \pi\left(\frac{15}{4}\right)\left[\frac{\phi}{6} \frac{\pi}{2}-\frac{1}{2}-\frac{1}{2} \sin (2 \phi)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\
= & \frac{15 \pi}{2}\left(\frac{\pi}{6}-\frac{\pi}{12}-\frac{1}{4} \sin \left(\frac{2 \pi}{3}\right)+\frac{1}{4} \sin \left(\frac{\pi}{3}\right)\right) \\
= & \frac{15 \pi}{2}\left(\frac{\pi}{12}-\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right)\right) \\
= & \frac{15 \pi}{2}\left(\frac{\pi}{12}\right) \\
= & \frac{5 \pi^{2}}{8}
\end{aligned}
$$

Example 6 (extra practice):

Calculate the following integral where E is the solid between $\rho=1, \rho=2$, above $\phi=\frac{\pi}{6}$, in the first octant.

$$
\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z
$$

STEP 1: Picture:

STEP 2: Inequalities:

$$
\left\{\begin{array}{l}
1 \leq \rho \leq 2 \\
0 \leq \theta \leq \frac{\pi}{2} \\
0 \leq \phi \leq \frac{\pi}{6}
\end{array}\right.
$$

STEP 3: Integrate:

$$
\begin{aligned}
& \iint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z \\
= & \int_{0}^{\frac{\pi}{6}} \int_{0}^{\frac{\pi}{2}} \int_{1}^{2} \rho \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
= & \frac{\pi}{2}\left(\int_{1}^{2} \rho^{3} d \rho\right)\left(\int_{0}^{\frac{\pi}{6}} \sin (\phi) d \phi\right) \\
= & \frac{\pi}{2}\left[\frac{\rho^{4}}{4}\right]_{1}^{2}[-\cos (\phi)]_{0}^{\frac{\pi}{6}} \\
= & \left(\frac{\pi}{2}\right)\left(\frac{15}{4}\right)\left[-\frac{\sqrt{3}}{2}+1\right] \\
= & \frac{15 \pi}{16}(2-\sqrt{3})
\end{aligned}
$$

6. Optional Appendix: $\rho^{2} \sin (\phi)$

Question: Where does $\rho^{2} \sin (\phi)$ come from?

Recall:

The length of an arc of radius L and angle α is $L \alpha$

This follows from proportionality: An angle of 2π (a full circle) corresponds to $2 \pi L$, hence an angle of α corresponds to αL.

Now fix a point (x, y, z) and move around that point a little bit by changing ρ, θ, ϕ. If you do that, then in spherical coordinates you get a little wedge, as in the following picture:

Picture:

The volume of that wedge is approximately:

$$
\text { Volume } \approx \text { Length } \times \text { Width } \times \text { Height }
$$

(1) Length $=d \rho$ (Small change in the radius)
(2) Width $=r d \theta=\rho \sin (\phi) d \theta$

(3) Height $=\rho d \theta$ (because arclength of length ρ and angle $d \phi$)

Therefore:
Volume $\approx(d \rho)(\rho \sin (\phi) d \theta)(\rho d \phi)=\rho^{2} \sin (\phi) d \rho d \theta d \phi$

