
LECTURE 28: FINAL EXAM REVIEW

There’s a saying in German that says “Everything has an end, except
for a sausage, which has two.”1 And with this, I would like to welcome
you to the final lecture of this course.

Today: Our year in review, with some sample final exam questions

1. It all started with Archimedes

Example 1: (Mandarin, 1 = Yi)

Show that for all C > 0, there is some n such that 2n > C

Suppose not, that is there is C > 0 such that for all n we have 2n ≤ C

Consider the set S = {2n | n ∈ N}

Then by assumption S is bounded above by C, and therefore has a
least upper bound M = sup(S)

Date: Tuesday, December 7, 2021.
1Alles hat ein Ende, nur die Wurst, die hat zwei

1
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Consider M
2 < M = sup(S), so by definition of sup, there is n such that

2n > M
2 , but then 2n+1 > M which is a contradiction since 2n+1 ∈ S

but M = sup(S) ⇒⇐ □

Example 2: (Spanish, 2 = Dos)

Let f be a non-decreasing function on R and let A be a bounded
subset of R. Show that sup f(A) ≤ f(sup(A)) and find f such
that sup f(A) < f(sup(A))

Notice for all a ∈ A, we have a ≤ sup(A) and so since f is non-
decreasing, we get f(a) ≤ f(sup(A)). Taking the sup over a ∈ A, we
get sup f(A) ≤ f(sup(A))
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As a counterexample, let A = (0, 1) and consider:

f(x) =

{
0 on (0, 1)

1 if x = 1

Then f(A) = f((0, 1)) = {0} so sup f(A) = 0 but f(sup(A)) = f(1) =
1, so sup f(A) < f(sup(A))

(It turns out that if f is continuous at sup(A), then we have equality)

2. lim inf and lim sup

Example 3: (English, 3 = three)

Suppose 1
2 ≤ sn ≤ 2 for all n, show that

lim inf
n→∞

1

sn
=

1

lim supn→∞ sn

In order to deal with lim inf or lim sup, the trick is to either use the
helper sequences uN and vN , or to use subsequences
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The proof below is similar in spirit to the limsup product rule

STEP 1: Let (snk
) be a subsequence of (sn) converging to s =:

lim supn→∞ sn ̸= 0.

Then 1
snk

→ 1
s , so

1
s is a limit point of 1

sn

But since lim infn→∞
1
sn

is the smallest possible limit point, we get

lim inf
n→∞

1

sn
≤ 1

s
=

1

lim supn→∞ sn

STEP 2: Similarly, let
(

1
snk

)
be a (possibly different) subsequence of(

1
sn

)
converging to t =: lim inf 1

sn
̸= 0

Then snk
→ 1

t , and since lim supn→∞ sn is the largest possible limit
point, we get

lim sup
n→∞

sn ≥ 1

t
=

1

lim infn→∞
1
sn

That is: lim inf
n→∞

1

sn
≥ 1

lim supn→∞ sn

Combining both steps, we get the desired result □

3. Why so Series?



LECTURE 28: FINAL EXAM REVIEW 5

Example 4: (Bengali, 4 = Tchar)

Suppose (sn) is a sequence such that, for all n ≥ 1, we have

|sn+1 − sn| ≤
1

n2

Show that (sn) converges

Hint: Show that (sn) is Cauchy. For this apply the Cauchy
criterion to

∑∞
n=1

1
n2

Let ϵ > 0 be given. Then since
∑∞

n=1
1
n2 converges (by the Integral

Test) it satisfies the Cauchy criterion, and hence there is N such that
if n ≥ m > N , then ∣∣∣∣∣

n∑
k=m

1

k2

∣∣∣∣∣ < ϵ

But then, with the same N , ifm,n > N , WLOG, n > m, and therefore

|sm − sn| = |sm − sm+1 + sm+1 − sm+2 + · · ·+ sn−1 − sn|
≤ |sm − sm+1|+ |sm+1 − sm+2|+ · · ·+ |sn−1 − sn|

≤ 1

m2
+

1

(m+ 1)2
+ · · ·+ 1

(n− 1)2

=
n−1∑
k=m

1

k2

<
n∑

k=m

1

k2

<ϵ✓
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Hence (sn) is Cauchy, and therefore (sn) converges □

4. Fun Continuity Problem

Example 5: (Hindi, 5 = Panj)

Suppose f is a continuous function on (−1, 1) that satisfies
f(2x) = f(x) for all x. Show that f is constant

The trick is to notice that

f(x) = f
(
2
(x
2

))
= f

(x
2

)
= f

(
2
(x
4

))
= f

(x
4

)
= f

(x
8

)
· · ·

And, more generally, by induction you can show that for all n, f
(

x
2n

)
=

f(x)

Now if x is fixed, consider the sequence sn = x
2n → 0. Then sn → 0,

and since f is continuous, we get f(sn) → f(0)

On the other hand, f(sn) = f
(

x
2n

)
= f(x) for all n, so f(sn) → f(x)

Therefore, comparing limits, we have f(x) = f(0) □

5. The Meme of the Course

Example 6: (Portuguese, 6 = Seis)

Let f : [a, b] → R be continuous and suppose there is a sequence
(sn) in [a, b] such that 0 ≤ f(sn) ≤ 1

n for all n Show that there is
some x ∈ [a, b] with f(x) = 0
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We have to be careful because don’t know whether (sn) converges!

Since (sn) is a sequence in [a, b], (sn) is bounded, and therefore, by
the Bolzano-Weierstraß Theorem, (sn) has a convergent subsequence
(snk

) that converges to some x ∈ [a, b].

Since snk
→ x and f is continuous, f(snk

) → f(x).

But, on the other hand, since 0 ≤ f(sn) ≤ 1
n , we have 0 ≤ f(snk

) ≤ 1
nk
,

and 1
nk

→ 0, by the squeeze theorem, we have f(snk
) → 0.

Combining f(snk
) → f(x) and f(snk

) → 0, we get f(x) = 0 □

6. I Value our Friendship

Example 7: (Russian, 7 = Siem)

Suppose 0 < a < b and let f : [a, b] → [a, b] be a continuous
function, show that there is c in (a, b) such that cf(c) = ab
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Consider g(x) = xf(x), which is continuous

g(a) = af(a) ≤ a(b) = ab (since f(x) ≤ b for all x)

g(b) = bf(b) ≥ b(a) = ab (since f(x) ≥ a for all x)

Therefore by the IVT, there is c in (a, b) such that g(c) = ab, that is
cf(c) = ab

Example 8: (Japanese, 8 = Hadshee)

Suppose f is a function with
∫ 1

0 f(x)dx = 1
3 , show there is c ∈

(0, 1) such that f(c) = c2

Let g(x) = f(x)− x2, then by the MVT for integrals, we have

1

1− 0

∫ 1

0

g(x)dx = g(c)

∫ 1

0

g(x)dx =

∫ 1

0

f(x)− x2dx =

∫ 1

0

f(x)dx−
∫ 1

0

x2dx =
1

3
− 1

3
= 0

Therefore the above becomes 0 = g(c) so f(c)−c2 = 0 so f(c) = c2 □

7. Uniform Continuity

Example 9: (German, 9 = Neun)

Show that if f is uniformly continuous on (a, b), then f is bounded
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Suppose not, then for every n there is sn such that |f(sn)| ≥ n. Since
(sn) is bounded, by Bolzano-Weierstraß, (sn) has a convergent subse-
quence (snk

). In particular, (snk
) is Cauchy

So since f is uniformly continuous, f(snk
) is Cauchy as well, so it is

bounded, but this contradicts that, by assumption, |f(snk
)| ≥ nk → ∞

⇒⇐ □

8. A Chill Limit

Example 10: (Cantonese, 10 = Tsa)

Use the definition of a limit to show

lim
x→3−

1

(x− 3)3
= −∞

For limits, I could ask you any possible scenario, infinite limits, limits
at infinity, one-sided limits, etc.

Here we want to show that for every M < 0 there is δ such that if
0 < 3− x < δ then 1

(x−3)3 < M

STEP 1: Scratchwork

1

(x− 3)5
< M ⇒ (x− 3)3 >

1

M
⇒ x− 3 >

1
3
√
M

⇒ 3− x <
−1
3
√
M

STEP 2: Actual Proof:

Let M < 0 be given, let δ = −1
3
√
M

> 0, then if 0 < 3− x < δ, then

3− x <
−1
3
√
M

⇒ x− 3 >
1

3
√
M

⇒ (x− 3)3 >
1

M
⇒ 1

(x− 3)3
< M
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Which is what we wanted to show □

9. Derivatives

Example 11: (Javanese, 11 = Sevelas)

Show that if f is continuous at 0, then g(x) = xf(x) is differen-
tiable at 0

lim
x→0

g(x)− g(0)

x
= lim

x→0

xf(x)− 0f(0)

x

= lim
x→0

xf(x)

x
= lim

x→0
f(x)

=f(0)

In particular the limit exists, and so g is differentiable at 0 with g′(0) =
f(0)

10. Integrals

Example 12: (Korean, 12 = Yeldo)

Show that if f is bounded and integrable on [a, b], then f 3 is
integrable

Hint: Try to estimate (f(x))3 − (f(y))3 first

STEP 1: Let’s first prove the hint:
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∣∣∣(f(x))3 − (f(y))3
∣∣∣ = ∣∣∣(f(x)− f(y))

(
(f(x))2 + f(x)f(y) + (f(y))2

)∣∣∣
≤ |f(x)− f(y)|

(
|f(x)|2 + |f(x)| |f(y)|+ |f(y)|2

)
≤ |f(x)− f(y)|

∣∣B2 +BB +B2
∣∣

=3B2 |f(x)− f(y)|

Where B is an upper bound of f

Remember that for integral problems, we have to “build” things up,
starting from the sub-interval and then taking sums:

STEP 2: M(f 3, [tk−1, tk])

On each sub-interval [tk−1, tk], by taking the sup over x and the inf
over y in the identity∣∣∣(f(x))3 − (f(y))3

∣∣∣ ≤ 3B2 |f(x)− f(y)|

We obtain:

M(f 3, [tk−1, tk])−m(f 3, [tk−1, tk]) ≤ 3B2 (M(f, [tk−1, tk])−m(f, [tk−1, tk]))

STEP 3: U(f 3, P )

And taking the sum over k, this implies

U(f 3, P )− L(f 3, P ) ≤ 3B2 (U(f, P )− L(f, P ))

STEP 4: Cauchy Criterion
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Since we don’t know what the integral of f is, it’s best to use the
Cauchy criterion.

Let ϵ > 0 be given. Then since f is integrable, there is a partition P
such that U(f, P )− L(f, P ) < ϵ

3B2 .

With the same partition P , we get

U(f 3, P )− L(f 3, P ) ≤ 3B2 (U(f, P )− L(f, P )) < 3B2
( ϵ

3B2

)
= ϵ✓

Hence f 3 is integrable on [a, b] □

Alright!!! This is officially the end of Math 409 and your analysis ad-
venture! Thank you for flying Peyam Airlines, it’s been a pleasure
having you on board, and I wish you a safe onward journey!
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