LECTURE 28: FINAL EXAM REVIEW

There's a saying in German that says "Everything has an end, except for a sausage, which has two."¹ And with this, I would like to welcome you to the final lecture of this course.

Today: Our year in review, with some sample final exam questions

Suppose not, that is there is C > 0 such that for all n we have $2^n \leq C$

Consider the set $S = \{2^n \mid n \in \mathbb{N}\}$

Then by assumption S is bounded above by C, and therefore has a least upper bound $M = \sup(S)$

Date: Tuesday, December 7, 2021.

¹Alles hat ein Ende, nur die Wurst, die hat zwei

Consider $\frac{M}{2} < M = \sup(S)$, so by definition of sup, there is n such that $2^n > \frac{M}{2}$, but then $2^{n+1} > M$ which is a contradiction since $2^{n+1} \in S$ but $M = \sup(S) \Rightarrow \Leftarrow$

Example 2: (Spanish, 2 = Dos)

Let f be a non-decreasing function on \mathbb{R} and let A be a bounded subset of \mathbb{R} . Show that $\sup f(A) \leq f(\sup(A))$ and find f such that $\sup f(A) < f(\sup(A))$

Notice for all $a \in A$, we have $a \leq \sup(A)$ and so since f is nondecreasing, we get $f(a) \leq f(\sup(A))$. Taking the sup over $a \in A$, we get $\sup f(A) \leq f(\sup(A))$

As a counterexample, let A = (0, 1) and consider:

Then $f(A) = f((0, 1)) = \{0\}$ so $\sup f(A) = 0$ but $f(\sup(A)) = f(1) = 1$, so $\sup f(A) < f(\sup(A))$

(It turns out that if f is continuous at $\sup(A)$, then we have equality)

2. lim inf AND lim sup

Example 3: (English, 3 = three)
Suppose
$$\frac{1}{2} \le s_n \le 2$$
 for all n , show that
 $\liminf_{n \to \infty} \frac{1}{s_n} = \frac{1}{\limsup_{n \to \infty} s_n}$

In order to deal with limit or lim sup, the trick is to either use the helper sequences u_N and v_N , or to use subsequences

The proof below is similar in spirit to the limsup product rule

STEP 1: Let (s_{n_k}) be a subsequence of (s_n) converging to $s =: \lim \sup_{n \to \infty} s_n \neq 0.$

Then $\frac{1}{s_{n_k}} \to \frac{1}{s}$, so $\frac{1}{s}$ is a limit point of $\frac{1}{s_n}$

But since $\liminf_{n\to\infty} \frac{1}{s_n}$ is the smallest possible limit point, we get

$$\liminf_{n \to \infty} \frac{1}{s_n} \le \frac{1}{s} = \frac{1}{\limsup_{n \to \infty} s_n}$$

STEP 2: Similarly, let $\left(\frac{1}{s_{n_k}}\right)$ be a (possibly different) subsequence of $\left(\frac{1}{s_n}\right)$ converging to $t =: \liminf \frac{1}{s_n} \neq 0$

Then $s_{n_k} \to \frac{1}{t}$, and since $\limsup_{n \to \infty} s_n$ is the largest possible limit point, we get

$$\limsup_{n \to \infty} s_n \ge \frac{1}{t} = \frac{1}{\liminf_{n \to \infty} \frac{1}{s_n}}$$

That is:
$$\liminf_{n \to \infty} \frac{1}{s_n} \ge \frac{1}{\limsup_{n \to \infty} s_n}$$

Combining both steps, we get the desired result

3. Why so Series?

Example 4: (Bengali, 4 = Tchar)

Suppose (s_n) is a sequence such that, for all $n \ge 1$, we have

$$|s_{n+1} - s_n| \le \frac{1}{n^2}$$

Show that (s_n) converges

Hint: Show that (s_n) is Cauchy. For this apply the Cauchy criterion to $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Let $\epsilon > 0$ be given. Then since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (by the Integral Test) it satisfies the Cauchy criterion, and hence there is N such that if $n \ge m > N$, then

$$\left|\sum_{k=m}^{n} \frac{1}{k^2}\right| < \epsilon$$

But then, with the same N, if m, n > N, WLOG, n > m, and therefore

$$\begin{aligned} |s_m - s_n| &= |s_m - s_{m+1} + s_{m+1} - s_{m+2} + \dots + s_{n-1} - s_n| \\ &\leq |s_m - s_{m+1}| + |s_{m+1} - s_{m+2}| + \dots + |s_{n-1} - s_n| \\ &\leq \frac{1}{m^2} + \frac{1}{(m+1)^2} + \dots + \frac{1}{(n-1)^2} \\ &= \sum_{k=m}^{n-1} \frac{1}{k^2} \\ &\leq \sum_{k=m}^n \frac{1}{k^2} \\ &\leq \epsilon \checkmark \end{aligned}$$

Hence (s_n) is Cauchy, and therefore (s_n) converges

4. FUN CONTINUITY PROBLEM

Example 5: (Hindi, 5 = Panj) Suppose f is a continuous function on (-1, 1) that satisfies f(2x) = f(x) for all x. Show that f is constant

The trick is to notice that

$$f(x) = f\left(2\left(\frac{x}{2}\right)\right) = f\left(\frac{x}{2}\right) = f\left(2\left(\frac{x}{4}\right)\right) = f\left(\frac{x}{4}\right) = f\left(\frac{x}{8}\right) \cdots$$

And, more generally, by induction you can show that for all n, $f\left(\frac{x}{2^n}\right) = f(x)$

Now if x is fixed, consider the sequence $s_n = \frac{x}{2^n} \to 0$. Then $s_n \to 0$, and since f is continuous, we get $f(s_n) \to f(0)$

On the other hand, $f(s_n) = f\left(\frac{x}{2^n}\right) = f(x)$ for all n, so $f(s_n) \to f(x)$

Therefore, comparing limits, we have f(x) = f(0)

5. The Meme of the Course

Example 6: (Portuguese, 6 = Seis) Let $f : [a, b] \to \mathbb{R}$ be continuous and suppose there is a sequence (s_n) in [a, b] such that $0 \le f(s_n) \le \frac{1}{n}$ for all n Show that there is some $x \in [a, b]$ with f(x) = 0 We have to be careful because don't know whether (s_n) converges!

Since (s_n) is a sequence in [a, b], (s_n) is bounded, and therefore, by the Bolzano-Weierstraß Theorem, (s_n) has a convergent subsequence (s_{n_k}) that converges to some $x \in [a, b]$.

Since $s_{n_k} \to x$ and f is continuous, $f(s_{n_k}) \to f(x)$.

But, on the other hand, since $0 \le f(s_n) \le \frac{1}{n}$, we have $0 \le f(s_{n_k}) \le \frac{1}{n_k}$, and $\frac{1}{n_k} \to 0$, by the squeeze theorem, we have $f(s_{n_k}) \to 0$.

Combining $f(s_{n_k}) \to f(x)$ and $f(s_{n_k}) \to 0$, we get f(x) = 0

6. I VALUE OUR FRIENDSHIP

Example 7: (Russian, 7 = Siem)

Suppose 0 < a < b and let $f : [a, b] \rightarrow [a, b]$ be a continuous function, show that there is c in (a, b) such that cf(c) = ab

Consider g(x) = xf(x), which is continuous

$$g(a) = af(a) \le a(b) = ab$$
 (since $f(x) \le b$ for all x)

$$g(b) = bf(b) \ge b(a) = ab$$
 (since $f(x) \ge a$ for all x)

Therefore by the IVT, there is c in (a, b) such that g(c) = ab, that is cf(c) = ab

Example 8: (Japanese, 8 = Hadshee)

Suppose f is a function with $\int_0^1 f(x) dx = \frac{1}{3}$, show there is $c \in (0,1)$ such that $f(c) = c^2$

Let $g(x) = f(x) - x^2$, then by the MVT for integrals, we have

$$\frac{1}{1-0} \int_0^1 g(x) dx = g(c)$$

$$\int_0^1 g(x)dx = \int_0^1 f(x) - x^2 dx = \int_0^1 f(x)dx - \int_0^1 x^2 dx = \frac{1}{3} - \frac{1}{3} = 0$$

Therefore the above becomes 0 = g(c) so $f(c) - c^2 = 0$ so $f(c) = c^2$

7. UNIFORM CONTINUITY

Example 9: (German, $9 = Neun$)
Show that if f is uniformly continuous on (a, b) , then f is bounded

Suppose not, then for every *n* there is s_n such that $|f(s_n)| \ge n$. Since (s_n) is bounded, by Bolzano-Weierstraß, (s_n) has a convergent subsequence (s_{n_k}) . In particular, (s_{n_k}) is Cauchy

So since f is uniformly continuous, $f(s_{n_k})$ is Cauchy as well, so it is bounded, but this contradicts that, by assumption, $|f(s_{n_k})| \ge n_k \to \infty$ $\Rightarrow \Leftarrow$

8. A CHILL LIMIT

Example 10: (Cantonese,
$$10 = Tsa$$
)

Use the definition of a limit to show

$$\lim_{x \to 3^{-}} \frac{1}{(x-3)^3} = -\infty$$

For limits, I could ask you any possible scenario, infinite limits, limits at infinity, one-sided limits, etc.

Here we want to show that for every M < 0 there is δ such that if $0 < 3 - x < \delta$ then $\frac{1}{(x-3)^3} < M$

STEP 1: Scratchwork

$$\frac{1}{(x-3)^5} < M \Rightarrow (x-3)^3 > \frac{1}{M} \Rightarrow x-3 > \frac{1}{\sqrt[3]{M}} \Rightarrow 3-x < \frac{-1}{\sqrt[3]{M}}$$

STEP 2: Actual Proof:

Let M < 0 be given, let $\delta = \frac{-1}{\sqrt[3]{M}} > 0$, then if $0 < 3 - x < \delta$, then

$$3 - x < \frac{-1}{\sqrt[3]{M}} \Rightarrow x - 3 > \frac{1}{\sqrt[3]{M}} \Rightarrow (x - 3)^3 > \frac{1}{M} \Rightarrow \frac{1}{(x - 3)^3} < M$$

Which is what we wanted to show

9. DERIVATIVES

Example 11: (Javanese, $11 = $ Sevelas)
Show that if f is continuous at 0, then $g(x) = xf(x)$ is differentiable at 0

$$\lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{xf(x) - 0f(0)}{x}$$
$$= \lim_{x \to 0} \frac{xf(x)}{x}$$
$$= \lim_{x \to 0} f(x)$$
$$= f(0)$$

In particular the limit exists, and so g is differentiable at 0 with g'(0) = f(0)

10. INTEGRALS

Example 12: (Korean, 12 = Yeldo) Show that if f is bounded and integrable on [a, b], then f^3 is integrable Hint: Try to estimate $(f(x))^3 - (f(y))^3$ first

STEP 1: Let's first prove the hint:

10

$$\begin{aligned} \left| (f(x))^3 - (f(y))^3 \right| &= \left| (f(x) - f(y)) \left((f(x))^2 + f(x)f(y) + (f(y))^2 \right) \right| \\ &\leq \left| f(x) - f(y) \right| \left(\left| f(x) \right|^2 + \left| f(x) \right| \left| f(y) \right| + \left| f(y) \right|^2 \right) \\ &\leq \left| f(x) - f(y) \right| \left| B^2 + BB + B^2 \right| \\ &= 3B^2 \left| f(x) - f(y) \right| \end{aligned}$$

Where B is an upper bound of f

Remember that for integral problems, we have to "build" things up, starting from the sub-interval and then taking sums:

STEP 2:
$$M(f^3, [t_{k-1}, t_k])$$

On each sub-interval $[t_{k-1}, t_k]$, by taking the sup over x and the inf over y in the identity

$$\left| (f(x))^3 - (f(y))^3 \right| \le 3B^2 \left| f(x) - f(y) \right|$$

We obtain:

$$M(f^{3}, [t_{k-1}, t_{k}]) - m(f^{3}, [t_{k-1}, t_{k}]) \le 3B^{2} \left(M(f, [t_{k-1}, t_{k}]) - m(f, [t_{k-1}, t_{k}]) \right)$$

STEP 3: $U(f^{3}, P)$

And taking the sum over k, this implies

$$U(f^3, P) - L(f^3, P) \le 3B^2 (U(f, P) - L(f, P))$$

STEP 4: Cauchy Criterion

Since we don't know what the integral of f is, it's best to use the **Cauchy criterion**.

Let $\epsilon > 0$ be given. Then since f is integrable, there is a partition P such that $U(f, P) - L(f, P) < \frac{\epsilon}{3B^2}$.

With the same partition P, we get

$$U(f^3, P) - L(f^3, P) \le 3B^2 \left(U(f, P) - L(f, P) \right) < 3B^2 \left(\frac{\epsilon}{3B^2} \right) = \epsilon \checkmark$$

Hence f^3 is integrable on $[a, b]$

Alright!!! This is officially the end of Math 409 and your analysis adventure! Thank you for flying Peyam Airlines, it's been a pleasure having you on board, and I wish you a safe onward journey!

