## LECTURE 28: FINAL EXAM REVIEW

There's a saying in German that says "Everything has an end, except for a sausage, which has two." And with this, I would like to welcome you to the final lecture of this course.

Today: Our year in review, with some sample final exam questions

## 1. It all started with Archimedes

## Example 1: (Mandarin, $1=\mathbf{Y i}$ )

Show that for all $C>0$, there is some $n$ such that $2^{n}>C$


Suppose not, that is there is $C>0$ such that for all $n$ we have $2^{n} \leq C$
Consider the set $S=\left\{2^{n} \mid n \in \mathbb{N}\right\}$
Then by assumption $S$ is bounded above by $C$, and therefore has a least upper bound $M=\sup (S)$

Date: Tuesday, December 7, 2021.
${ }^{1}$ Alles hat ein Ende, nur die Wurst, die hat zwei

Consider $\frac{M}{2}<M=\sup (S)$, so by definition of sup, there is $n$ such that $2^{n}>\frac{M}{2}$, but then $2^{n+1}>M$ which is a contradiction since $2^{n+1} \in S$ but $M=\sup (S) \Rightarrow \Leftarrow$

## Example 2: (Spanish, $2=$ Dos)

Let $f$ be a non-decreasing function on $\mathbb{R}$ and let $A$ be a bounded subset of $\mathbb{R}$. Show that $\sup f(A) \leq f(\sup (A))$ and find $f$ such that $\sup f(A)<f(\sup (A))$


Notice for all $a \in A$, we have $a \leq \sup (A)$ and so since $f$ is nondecreasing, we get $f(a) \leq f(\sup (A))$. Taking the sup over $a \in A$, we get $\sup f(A) \leq f(\sup (A))$

As a counterexample, let $A=(0,1)$ and consider:

$$
f(x)= \begin{cases}0 & \text { on }(0,1) \\ 1 & \text { if } x=1\end{cases}
$$

- f(sup $(A))$
$f$
$f(A)$


Then $f(A)=f((0,1))=\{0\}$ so $\sup f(A)=0$ but $f(\sup (A))=f(1)=$ $1, \operatorname{so} \sup f(A)<f(\sup (A))$
(It turns out that if $f$ is continuous at $\sup (A)$, then we have equality)
2. liminf AND limsup

## Example 3: (English, $3=$ three)

Suppose $\frac{1}{2} \leq s_{n} \leq 2$ for all $n$, show that

$$
\liminf _{n \rightarrow \infty} \frac{1}{s_{n}}=\frac{1}{\lim \sup _{n \rightarrow \infty} s_{n}}
$$

In order to deal with liminf or limsup, the trick is to either use the helper sequences $u_{N}$ and $v_{N}$, or to use subsequences

The proof below is similar in spirit to the limsup product rule
STEP 1: Let $\left(s_{n_{k}}\right)$ be a subsequence of $\left(s_{n}\right)$ converging to $s=$ : $\lim \sup _{n \rightarrow \infty} s_{n} \neq 0$.

Then $\frac{1}{s_{n_{k}}} \rightarrow \frac{1}{s}$, so $\frac{1}{s}$ is a limit point of $\frac{1}{s_{n}}$
But since $\liminf _{n \rightarrow \infty} \frac{1}{s_{n}}$ is the smallest possible limit point, we get

$$
\liminf _{n \rightarrow \infty} \frac{1}{s_{n}} \leq \frac{1}{s}=\frac{1}{\lim \sup _{n \rightarrow \infty} s_{n}}
$$

STEP 2: Similarly, let $\left(\frac{1}{s_{n_{k}}}\right)$ be a (possibly different) subsequence of $\left(\frac{1}{s_{n}}\right)$ converging to $t=: \lim \inf \frac{1}{s_{n}} \neq 0$
Then $s_{n_{k}} \rightarrow \frac{1}{t}$, and since $\lim \sup _{n \rightarrow \infty} s_{n}$ is the largest possible limit point, we get

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} s_{n} \geq \frac{1}{t}=\frac{1}{\lim \inf _{n \rightarrow \infty} \frac{1}{s_{n}}} \\
\text { That is: } \liminf _{n \rightarrow \infty} \frac{1}{s_{n}} \geq \frac{1}{{\lim \sup _{n \rightarrow \infty} s_{n}}}
\end{gathered}
$$

Combining both steps, we get the desired result

## 3. Why so SERIES?

## Example 4: (Bengali, $4=$ Tchar)

Suppose $\left(s_{n}\right)$ is a sequence such that, for all $n \geq 1$, we have

$$
\left|s_{n+1}-s_{n}\right| \leq \frac{1}{n^{2}}
$$

Show that $\left(s_{n}\right)$ converges
Hint: Show that $\left(s_{n}\right)$ is Cauchy. For this apply the Cauchy criterion to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$

Let $\epsilon>0$ be given. Then since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (by the Integral Test) it satisfies the Cauchy criterion, and hence there is $N$ such that if $n \geq m>N$, then

$$
\left|\sum_{k=m}^{n} \frac{1}{k^{2}}\right|<\epsilon
$$

But then, with the same $N$, if $m, n>N$, WLOG, $n>m$, and therefore

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & =\left|s_{m}-s_{m+1}+s_{m+1}-s_{m+2}+\cdots+s_{n-1}-s_{n}\right| \\
& \leq\left|s_{m}-s_{m+1}\right|+\left|s_{m+1}-s_{m+2}\right|+\cdots+\left|s_{n-1}-s_{n}\right| \\
& \leq \frac{1}{m^{2}}+\frac{1}{(m+1)^{2}}+\cdots+\frac{1}{(n-1)^{2}} \\
& =\sum_{k=m}^{n-1} \frac{1}{k^{2}} \\
& <\sum_{k=m}^{n} \frac{1}{k^{2}} \\
& <\epsilon \checkmark
\end{aligned}
$$

Hence $\left(s_{n}\right)$ is Cauchy, and therefore $\left(s_{n}\right)$ converges

## 4. Fun Continuity Problem

## Example 5: (Hindi, $5=$ Panj)

Suppose $f$ is a continuous function on $(-1,1)$ that satisfies $f(2 x)=f(x)$ for all $x$. Show that $f$ is constant

The trick is to notice that

$$
f(x)=f\left(2\left(\frac{x}{2}\right)\right)=f\left(\frac{x}{2}\right)=f\left(2\left(\frac{x}{4}\right)\right)=f\left(\frac{x}{4}\right)=f\left(\frac{x}{8}\right) \cdots
$$

And, more generally, by induction you can show that for all $n, f\left(\frac{x}{2^{n}}\right)=$ $f(x)$

Now if $x$ is fixed, consider the sequence $s_{n}=\frac{x}{2^{n}} \rightarrow 0$. Then $s_{n} \rightarrow 0$, and since $f$ is continuous, we get $f\left(s_{n}\right) \rightarrow f(0)$

On the other hand, $f\left(s_{n}\right)=f\left(\frac{x}{2^{n}}\right)=f(x)$ for all $n$, so $f\left(s_{n}\right) \rightarrow f(x)$
Therefore, comparing limits, we have $f(x)=f(0)$

## 5. The Meme of the Course

## Example 6: (Portuguese, $6=$ Seis)

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose there is a sequence $\left(s_{n}\right)$ in $[a, b]$ such that $0 \leq f\left(s_{n}\right) \leq \frac{1}{n}$ for all $n$ Show that there is some $x \in[a, b]$ with $f(x)=0$

We have to be careful because don't know whether $\left(s_{n}\right)$ converges!
Since $\left(s_{n}\right)$ is a sequence in $[a, b],\left(s_{n}\right)$ is bounded, and therefore, by the Bolzano-Weierstraß Theorem, $\left(s_{n}\right)$ has a convergent subsequence $\left(s_{n_{k}}\right)$ that converges to some $x \in[a, b]$.

Since $s_{n_{k}} \rightarrow x$ and $f$ is continuous, $f\left(s_{n_{k}}\right) \rightarrow f(x)$.
But, on the other hand, since $0 \leq f\left(s_{n}\right) \leq \frac{1}{n}$, we have $0 \leq f\left(s_{n_{k}}\right) \leq \frac{1}{n_{k}}$, and $\frac{1}{n_{k}} \rightarrow 0$, by the squeeze theorem, we have $f\left(s_{n_{k}}\right) \rightarrow 0$.

Combining $f\left(s_{n_{k}}\right) \rightarrow f(x)$ and $f\left(s_{n_{k}}\right) \rightarrow 0$, we get $f(x)=0$

## 6. I Value our Friendship

## Example 7: (Russian, $7=$ Siem)

Suppose $0<a<b$ and let $f:[a, b] \rightarrow[a, b]$ be a continuous function, show that there is $c$ in $(a, b)$ such that $c f(c)=a b$


Consider $g(x)=x f(x)$, which is continuous
$g(a)=a f(a) \leq a(b)=a b($ since $f(x) \leq b$ for all $x)$
$g(b)=b f(b) \geq b(a)=a b($ since $f(x) \geq a$ for all $x)$
Therefore by the IVT, there is $c$ in $(a, b)$ such that $g(c)=a b$, that is $c f(c)=a b$

## Example 8: (Japanese, $8=$ Hadshee)

Suppose $f$ is a function with $\int_{0}^{1} f(x) d x=\frac{1}{3}$, show there is $c \in$ $(0,1)$ such that $f(c)=c^{2}$

Let $g(x)=f(x)-x^{2}$, then by the MVT for integrals, we have

$$
\begin{gathered}
\frac{1}{1-0} \int_{0}^{1} g(x) d x=g(c) \\
\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x)-x^{2} d x=\int_{0}^{1} f(x) d x-\int_{0}^{1} x^{2} d x=\frac{1}{3}-\frac{1}{3}=0
\end{gathered}
$$

Therefore the above becomes $0=g(c)$ so $f(c)-c^{2}=0$ so $f(c)=c^{2}$

## 7. Uniform Continuity

## Example 9: (German, $9=$ Neun)

Show that if $f$ is uniformly continuous on $(a, b)$, then $f$ is bounded

Suppose not, then for every $n$ there is $s_{n}$ such that $\left|f\left(s_{n}\right)\right| \geq n$. Since $\left(s_{n}\right)$ is bounded, by Bolzano-Weierstraß, $\left(s_{n}\right)$ has a convergent subsequence $\left(s_{n_{k}}\right)$. In particular, ( $s_{n_{k}}$ ) is Cauchy

So since $f$ is uniformly continuous, $f\left(s_{n_{k}}\right)$ is Cauchy as well, so it is bounded, but this contradicts that, by assumption, $\left|f\left(s_{n_{k}}\right)\right| \geq n_{k} \rightarrow \infty$ $\Rightarrow \Leftarrow$

## 8. A Chill Limit

## Example 10: (Cantonese, $10=$ Tsa)

Use the definition of a limit to show

$$
\lim _{x \rightarrow 3^{-}} \frac{1}{(x-3)^{3}}=-\infty
$$

For limits, I could ask you any possible scenario, infinite limits, limits at infinity, one-sided limits, etc.

Here we want to show that for every $M<0$ there is $\delta$ such that if $0<3-x<\delta$ then $\frac{1}{(x-3)^{3}}<M$

## STEP 1: Scratchwork

$$
\frac{1}{(x-3)^{5}}<M \Rightarrow(x-3)^{3}>\frac{1}{M} \Rightarrow x-3>\frac{1}{\sqrt[3]{M}} \Rightarrow 3-x<\frac{-1}{\sqrt[3]{M}}
$$

## STEP 2: Actual Proof:

Let $M<0$ be given, let $\delta=\frac{-1}{\sqrt[3]{M}}>0$, then if $0<3-x<\delta$, then

$$
3-x<\frac{-1}{\sqrt[3]{M}} \Rightarrow x-3>\frac{1}{\sqrt[3]{M}} \Rightarrow(x-3)^{3}>\frac{1}{M} \Rightarrow \frac{1}{(x-3)^{3}}<M
$$

Which is what we wanted to show

## 9. Derivatives

## Example 11: (Javanese, $11=$ Sevelas)

Show that if $f$ is continuous at 0 , then $g(x)=x f(x)$ is differentiable at 0

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x} & =\lim _{x \rightarrow 0} \frac{x f(x)-0 f(0)}{x} \\
& =\lim _{x \rightarrow 0} \frac{x f(x)}{x} \\
& =\lim _{x \rightarrow 0} f(x) \\
& =f(0)
\end{aligned}
$$

In particular the limit exists, and so $g$ is differentiable at 0 with $g^{\prime}(0)=$ $f(0)$

## 10. Integrals

## Example 12: (Korean, 12 = Yeldo)

Show that if $f$ is bounded and integrable on $[a, b]$, then $f^{3}$ is integrable

Hint: Try to estimate $(f(x))^{3}-(f(y))^{3}$ first

STEP 1: Let's first prove the hint:

$$
\begin{aligned}
\left|(f(x))^{3}-(f(y))^{3}\right| & =\left|(f(x)-f(y))\left((f(x))^{2}+f(x) f(y)+(f(y))^{2}\right)\right| \\
& \leq|f(x)-f(y)|\left(|f(x)|^{2}+|f(x)||f(y)|+|f(y)|^{2}\right) \\
& \leq|f(x)-f(y)|\left|B^{2}+B B+B^{2}\right| \\
& =3 B^{2}|f(x)-f(y)|
\end{aligned}
$$

Where $B$ is an upper bound of $f$
Remember that for integral problems, we have to "build" things up, starting from the sub-interval and then taking sums:

STEP 2: $M\left(f^{3},\left[t_{k-1}, t_{k}\right]\right)$
On each sub-interval $\left[t_{k-1}, t_{k}\right]$, by taking the sup over $x$ and the inf over $y$ in the identity

$$
\left|(f(x))^{3}-(f(y))^{3}\right| \leq 3 B^{2}|f(x)-f(y)|
$$

We obtain:
$M\left(f^{3},\left[t_{k-1}, t_{k}\right]\right)-m\left(f^{3},\left[t_{k-1}, t_{k}\right]\right) \leq 3 B^{2}\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)$
STEP 3: $U\left(f^{3}, P\right)$
And taking the sum over $k$, this implies

$$
U\left(f^{3}, P\right)-L\left(f^{3}, P\right) \leq 3 B^{2}(U(f, P)-L(f, P))
$$

STEP 4: Cauchy Criterion

Since we don't know what the integral of $f$ is, it's best to use the Cauchy criterion.

Let $\epsilon>0$ be given. Then since $f$ is integrable, there is a partition $P$ such that $U(f, P)-L(f, P)<\frac{\epsilon}{3 B^{2}}$.

With the same partition $P$, we get

$$
U\left(f^{3}, P\right)-L\left(f^{3}, P\right) \leq 3 B^{2}(U(f, P)-L(f, P))<3 B^{2}\left(\frac{\epsilon}{3 B^{2}}\right)=\epsilon \mathfrak{V}
$$

Hence $f^{3}$ is integrable on $[a, b]$
Alright!!! This is officially the end of Math 409 and your analysis adventure! Thank you for flying Peyam Airlines, it's been a pleasure having you on board, and I wish you a safe onward journey!



