LECTURE 29: SPHERICAL (II) + THE JACOBIAN

1. More Spherical Practice

Example 1:

$$
\iiint_{E} x d x d y d z
$$

E : solid under the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=1$, in the first octant.

STEP 1: Picture:

Date: Wednesday, November 3, 2021.

Note: $z=\sqrt{x^{2}+y^{2}} \Rightarrow \phi=\frac{\pi}{4}$ and $x^{2}+y^{2}+z^{2}=1 \Rightarrow \rho=1$
STEP 2: Inequalities: (here we have $\frac{\pi}{2}$ because it's the first octant)

$$
\left\{\begin{array}{c}
0 \leq \rho \leq 1 \\
0 \leq \theta \leq \frac{\pi}{2} \\
\frac{\pi}{4} \leq \phi \leq \frac{\pi}{2}
\end{array}\right.
$$

STEP 3: Integrate:

$$
\begin{aligned}
& \iiint_{E} x d x d y d z \\
= & \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho \sin (\phi) \cos (\theta) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
= & \left(\int_{0}^{1} \rho^{3} d \rho\right)\left(\int_{0}^{\frac{\pi}{2}} \cos (\theta) d \theta\right)\left(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin ^{2}(\phi) d \phi\right) \\
= & {\left[\frac{\rho^{4}}{4}\right]_{0}^{1}[\sin (\theta)]_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2}-\frac{1}{2} \cos (2 \phi) d \phi } \\
= & \left(\frac{1}{4}\right)(1)\left[\frac{\phi}{2}-\frac{1}{4} \sin (2 \phi)\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}(u=2 \phi) \\
= & \frac{1}{4}\left(\frac{\pi}{4}-\frac{\pi}{8}-\frac{1}{4} \sin (\pi)+\frac{1}{4} \sin \left(\frac{\pi}{2}\right)\right) \\
= & \frac{1}{4}\left(\frac{\pi}{8}+\frac{1}{4}\right) \\
= & \frac{\pi}{32}+\frac{1}{16}
\end{aligned}
$$

2. Mass of THE SUN

Video: Mass of the Sun

And of course I saved the best for last! Because there is this meme that was popular a couple of years ago:

Without further ado ... let's calculate the mass of the sun!

Example 2:

Suppose the sun E is a ball of radius $R=6.9 \times 10^{10} \mathrm{~cm}$ and density $\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of the sun?

Note: $\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ blows up near $(0,0,0)$, so this is saying that the sun is heavier at its core than on the surface, which makes sense physically.

STEP 1: Picture:

STEP 2: Inequalities:

$$
\left\{\begin{array}{c}
0 \leq \rho \leq R \\
0 \leq \theta \leq 2 \pi \\
0 \leq \phi \leq \pi
\end{array}\right.
$$

STEP 3: Integrate:

$$
\begin{aligned}
\text { Mass } & =\iiint_{E} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} d x d y d z \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left(\frac{1}{\rho}\right) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =2 \pi\left(\int_{0}^{R} \rho d \rho\right)\left(\int_{0}^{\pi} \sin (\phi) d \phi\right) \\
& =(2 \pi) \frac{R^{2}}{2}(2) \\
& =2 \pi R^{2} \\
& \approx 2.99 \times 10^{22} g
\end{aligned}
$$

Remark: NASA uses the following density:

$$
519\left(\frac{\rho}{R}\right)^{4}-1630\left(\frac{\rho}{R}\right)^{3}+1844\left(\frac{\rho}{R}\right)^{2}-889\left(\frac{\rho}{R}\right)+155
$$

Which would give you 2.7×10^{33} grams. The actual mass is 1.98×10^{33} grams, so this is not bad at all!

3. u-sub the COOL way

Welcome to the one and only integration technique in this course: u-sub! For this, let me "remind" you how to do single-variable u-sub, but I'll present it in a way that will be useful in this course

Example 3:

Calculate $\int_{1}^{2} e^{-x^{2}}(-2 x) d x$
STEP 1: Let $u=-x^{2}$
STEP 2: Endpoints: $u(1)=-1, u(2)=-4$.
So u turns $D=[1,2]$ into $D^{\prime}=[-1,-4]=[-4,-1]$.

STEP 3: du: Beware of the absolute value! (makes sense, $d u$ should be positive)

$$
d u=\left|\frac{d u}{d x}\right| d x=|-2 x| d x=2 x d x \Rightarrow-2 x d x=-d u
$$

STEP 4: Integrate

$$
\begin{aligned}
\int_{1}^{2} e^{-x^{2}}(-2 x) d x & =\int_{[1,2]} e^{-x^{2}}(-2 x) d x=\int_{D} e^{-x^{2}}(-2 x) d x=\int_{D^{\prime}} e^{u}(-d u) \\
& =-\int_{[-4,-1]} e^{u} d u=-\int_{-4}^{-1} e^{u} d u=-\left(e^{-1}-e^{-4}\right)=e^{-4}-e^{-1}
\end{aligned}
$$

4. Multivariable Example

Video: The Jacobian
The good news is that for double and triple integrals, the process is similar to the above!

Example 4:

$$
\iint_{D} \sin \left(\frac{y-x}{y+x}\right) d x d y
$$

Where D is the square with vertices $(-1,0),(0,-1),(1,0),(0,1)$.

STEP 1:

$$
\left\{\begin{array}{l}
u=y-x \\
v=y+x
\end{array}\right.
$$

STEP 2: "Endpoints"

Trick: Look at the values of u and v at the vertices:

Similarly $(1,0)$ becomes $(-1,1)$ and $(0,1)$ becomes $(1,1)$.
So D^{\prime} is a square with vertices $(1,-1),(-1,-1),(-1,1),(1,1)$
STEP 3: "du=| $\left.\frac{d u}{d x} \right\rvert\, d x^{\prime \prime}$
Here we get: $d u d v=\left|\frac{d u d v}{d x d y}\right| d x d y$
Let's put all the possible partial derivatives together in a determinant:

$$
\frac{d u d v}{d x d y}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|=(-1)(1)-(1)(1)=-2
$$

Therefore: $d u d v=|-2| d x d y=2 d x d y \Rightarrow d x d y=\frac{1}{2} d u d v$
Note: This number (or its absolute value) is called the Jacobian, a tribute to Taylor Lautner in Twilight. It's sometimes written as $\frac{\partial(u, v)}{\partial(x, y)}$ instead of $\frac{d u d v}{d x d y}$

STEP 4: Integrate:

$$
\begin{aligned}
\iint_{D} \sin \left(\frac{y-x}{y+x}\right) d x d y & =\iint_{D^{\prime}} \sin \left(\frac{u}{v}\right) \frac{1}{2} d u d v \\
& =\frac{1}{2} \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{u}{v}\right) d u d v \text { (Much easier to integrate) } \\
& =\frac{1}{2} \int_{-1}^{1} 0 d v \quad\left(\text { Because } \sin \left(\frac{u}{v}\right) \text { is odd in } u\right) \\
& =0
\end{aligned}
$$

5. Optional Appendix: Why this works

Fact from Linear Algebra:

If D and D^{\prime} are regions and A is a matrix between them, then:

$$
\operatorname{Area}\left(D^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Area}(D)
$$

Suppose that D is a small rectangle with sides $d x$ and $d y$. Then

$$
A=\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]
$$

transforms D into D^{\prime}, which is an object with sides $d u$ and $d v$:

On the one hand, the area of D^{\prime} is approximately $d u d v$, but on the other hand, by the formula above:

$$
\begin{gathered}
\operatorname{Area}\left(D^{\prime}\right)=|\operatorname{det} A| \operatorname{Area}(D) \\
d u d v=\left|\operatorname{det}\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]\right| d x d y \\
d u d v=\left|\frac{d u d v}{d x d y}\right| d x d y
\end{gathered}
$$

Finally, multiply both sides of the above by $f(u, v)=f(x, y)$ and integrate to get:

$$
\iint_{D^{\prime}} f(u, v) d u d v=\iint_{D} f(x, y)\left|\frac{d u d v}{d x d y}\right| d x d y
$$

