
LECTURE 29: SPHERICAL (II) + THE JACOBIAN (I)

1. More Spherical Practice

Example 1: ∫ ∫ ∫
E

x dxdydz

E: solid under the cone z =
√

x2 + y2 and inside the sphere
x2 + y2 + z2 = 1, in the first octant.

STEP 1: Picture:

Date: Wednesday, November 3, 2021.
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Note: z =
√

x2 + y2 ⇒ ϕ = π
4 and x2 + y2 + z2 = 1 ⇒ ρ = 1

STEP 2: Inequalities: (here we have π
2 because it’s the first octant)

0 ≤ ρ ≤ 1

0 ≤ θ ≤ π

2
π

4
≤ ϕ ≤ π

2

STEP 3: Integrate:∫ ∫ ∫
E

x dxdydz

=

∫ π
2

π
4

∫ π
2

0

∫ 1

0

ρ sin(ϕ) cos(θ) ρ2 sin(ϕ) dρdθdϕ

=

(∫ 1

0

ρ3dρ

)(∫ π
2

0

cos(θ)dθ

)(∫ π
2

π
4

sin2(ϕ)dϕ

)

=

[
ρ4

4

]1
0

[sin(θ)]
π
2
0

∫ π
2

π
4

1

2
− 1

2
cos(2ϕ)dϕ

=

(
1

4

)
(1)

[
ϕ

2
− 1

4
sin(2ϕ)

]π
2

π
4

(u = 2ϕ)

=
1

4

(
π

4
− π

8
− 1

4
sin(π) +

1

4
sin
(π
2

))
=
1

4

(
π

8
+

1

4

)
=

π

32
+

1

16

2. Mass of the sun
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Video: Mass of the Sun

And of course I saved the best for last! Because there is this meme
that was popular a couple of years ago:

Without further ado . . . let’s calculate the mass of the sun!

Example 2:

Suppose the sun E is a ball of radius R = 6.9 × 1010 cm and
density 1√

x2+y2+z2
g/cm3. What is the mass of the sun?

Note: 1√
x2+y2+z2

blows up near (0, 0, 0), so this is saying that the sun

is heavier at its core than on the surface, which makes sense physically.

STEP 1: Picture:

https://www.youtube.com/watch?v=_pN7zuq-MNk
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STEP 2: Inequalities: 
0 ≤ ρ ≤ R

0 ≤ θ ≤ 2π

0 ≤ ϕ ≤ π

STEP 3: Integrate:

Mass =

∫ ∫ ∫
E

1√
x2 + y2 + z2

dxdydz

=

∫ π

0

∫ 2π

0

∫ R

0

(
1

ρ

)
ρ2 sin(ϕ)dρdθdϕ

=2π

(∫ R

0

ρdρ

)(∫ π

0

sin(ϕ)dϕ

)
=(2π)

R2

2
(2)

=2πR2

≈2.99× 1022g
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Remark: NASA uses the following density:

519
( ρ
R

)4
− 1630

( ρ
R

)3
+ 1844

( ρ
R

)2
− 889

( ρ
R

)
+ 155

Which would give you 2.7×1033 grams. The actual mass is 1.98×1033

grams, so this is not bad at all!

3. u−sub the COOL way

Welcome to the one and only integration technique in this course:
u−sub! For this, let me “remind” you how to do single-variable u−sub,
but I’ll present it in a way that will be useful in this course

Example 3:

Calculate
∫ 2

1 e−x2

(−2x)dx

STEP 1: Let u = −x2

STEP 2: Endpoints: u(1) = −1, u(2) = −4.

So u turns D = [1, 2] into D′ =������[−1,−4] = [−4,−1].
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STEP 3: du: Beware of the absolute value! (makes sense, du should
be positive)

du =

∣∣∣∣dudx
∣∣∣∣dx = |−2x|dx = 2xdx ⇒ −2xdx = −du

STEP 4: Integrate

∫ 2

1

e−x2

(−2x)dx =

∫
[1,2]

e−x2

(−2x)dx =

∫
D

e−x2

(−2x)dx =

∫
D′
eu(−du)

=−
∫
[−4,−1]

eudu = −
∫ −1

−4

eudu = −
(
e−1 − e−4

)
= e−4 − e−1

4. Multivariable Example

Video: The Jacobian

The good news is that for double and triple integrals, the process is
similar to the above!

Example 4: ∫ ∫
D

sin

(
y − x

y + x

)
dxdy

Where D is the square with vertices (−1, 0), (0,−1), (1, 0), (0, 1).

STEP 1: {
u =y − x

v =y + x

STEP 2: “Endpoints”

https://www.youtube.com/watch?v=SrYStw84T4o
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Trick: Look at the values of u and v at the vertices:

(−1, 0) ⇒

{
u = y − x = 0− (−1) = 1

v = y + x = 0 + (−1) = −1
⇒ (1,−1)

(0,−1) ⇒

{
u = −1− 0 = −1

v = −1 + 0 = −1
⇒ (−1,−1)

Similarly (1, 0) becomes (−1, 1) and (0, 1) becomes (1, 1).

So D′ is a square with vertices (1,−1), (−1,−1), (−1, 1), (1, 1)

STEP 3: “du =
∣∣du
dx

∣∣ dx′′
Here we get: dudv =

∣∣∣∣dudvdxdy

∣∣∣∣dxdy
Let’s put all the possible partial derivatives together in a determinant:

dudv

dxdy
=

∣∣∣∣∣∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ =
∣∣∣∣−1 1
1 1

∣∣∣∣ = (−1)(1)− (1)(1) = −2
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Therefore: dudv = |−2|dxdy = 2dxdy ⇒ dxdy =
1

2
dudv

Note: This number (or its absolute value) is called the Jacobian, a

tribute to Taylor Lautner in Twilight. It’s sometimes written as ∂(u,v)
∂(x,y)

instead of dudv
dxdy

STEP 4: Integrate:

∫ ∫
D

sin

(
y − x

y + x

)
dxdy =

∫ ∫
D′
sin
(u
v

) 1

2
dudv

=
1

2

∫ 1

−1

∫ 1

−1

sin
(u
v

)
dudv (Much easier to integrate)

=
1

2

∫ 1

−1

0 dv (Because sin
(u
v

)
is odd in u)

=0



LECTURE 29: SPHERICAL (II) + THE JACOBIAN (I) 9

5. Optional Appendix: Why this works

Fact from Linear Algebra:

If D and D′ are regions and A is a matrix between them, then:

Area(D′) = |det(A)|Area(D)

Suppose that D is a small rectangle with sides dx and dy. Then

A =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

transforms D into D′, which is an object with sides du and dv:
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On the one hand, the area of D′ is approximately dudv, but on the
other hand, by the formula above:

Area(D′) = |detA|Area(D)

dudv =

∣∣∣∣∣det
[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]∣∣∣∣∣ dxdy
dudv =

∣∣∣∣dudvdxdy

∣∣∣∣ dxdy
Finally, multiply both sides of the above by f(u, v) = f(x, y) and
integrate to get:∫ ∫

D′
f(u, v)dudv =

∫ ∫
D

f(x, y)

∣∣∣∣dudvdxdy

∣∣∣∣ dxdy
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