LECTURE 3: THE COMPLETENESS AXIOM (I)

Today: We'll discuss the single most important concept in this course:
The Supremum of a set. It’s basically a more relaxed version of a
maximum, so let’s cover that first.

1. MAXIMUM AND MINIMUM
Video: Max and Min

Scenario: Suppose I tell you: “You're the best student in the class.”
This means that you're better than all the other students in the class.
Same with maximum:

Let S be a nonempty subset of R.

We say sg is the maximum of S and write s) = max §' if
(1) Ssp €S
(2) For all s € S, s < 5

Similar for min S (but this time s > s)

Date: Tuesday, September 7, 2021.


https://youtu.be/9CyQ8bW210Y

2 LECTURE 3: THE COMPLETENESS AXIOM (I)

Examples:
(1) S =1{1,2,3,4}, then max .S =4
(2) S =0,1], then maxS =1 and min S =0

(3) minN = 1, but N has no max:

Why? Suppose maxN = ng, then by definition n < ng for all
neN. Butlet n=ng+1toget ng+1<ny =«
——

n

n, (max) Bigger!

| 4
—t—t— . >
| Il0+ 1 N

(4) (extra practice)
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A4

Then S has no max: Suppose maxS = sg, then by definition
for all n € N, n-" < so for all n.

But then let n be any even integer that is greater than sy, then
n" = n > sy which contradicts ntV" < sy =<

(Also S has no min, but we’ll come back to that later)
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Important Note:

It’s important that max S be an element S (it’s part of the
definition of max).

(5) S =10,4). Then min S = 0, but max .S doesn’t exist (it cannot
be 4 because 4 ¢ .5).

Why? Suppose maxS = sg. Then for all s € 5, s < sg.

But then let s = 22 € S (midpoint of sy and 4), then by

construction s > sg, but this contradicts s < sy =<«

O So 4
| : . '9)

So+4
2

This is really bothersome though! Intuitively 4 should be the max of
S, but the only reason it isn’t is because here 4 is not in S

Is there a way to relax the notion of max so that max[0,4) = 47
(even though 4 is not in it)

It turns out there is, and it’s called the sup!
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2. UPPER AND LOWER BOUNDS

Video: Upper Bound

The notion of sup has to do upper bounds, which we’ll define now:

Let S be a nonempty subset of R. Then:

(1) S is bounded above by M < oo if s < M for all s € S.
We call M an upper bound for S

(2) S is bounded below by m > —oo is s > m for all s € S.
We call m a lower bound for S

(3) Finally, S is bounded if it is both bounded above and
below.

Bounded S M
above .

Bounded ™
below

N

Bounded



https://youtu.be/-Sho-sphi9s
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Examples:

(1) N is bounded below by 1 but not bounded above, so N is un-
bounded.

(2) S =10,4) is bounded above by 4 since s < 4 for all s € S. It is
also bounded below by 0 since s > 0 for all s € S. Hence S is
bounded

Remark: The upper bound M doesn’t have to be in S; that’s
what makes this so great!

Important Observation: 4 is an upper bound for S, but there
are many other upper bounds for S, like 5,6, 7.5, and in fact any
number > 4 is an upper bound for S.

q 4 5 6 7.5

- 9

Intuitively it seems that 4 is the “optimal” upper bound. And in
fact, among all the possible upper bounds of S, 4 is the smallest
one. This finally brings us to the concept of sup, also called the
least upper bound:

3. SUPREMUM

Video: What’s Sup?



https://youtu.be/lZEcsOn6qUA
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Intuitively: sup(S) is the smallest possible upper bound for S (like 4
in the previous example).

The book in fact takes that to be the definition of sup, but the defini-
tion below is more widely used in analysis.

Analogy: Suppose I tell you: “You did not get the highest grade in
the course?” Your first reaction should be: “Who got a higher grade
than me?” And this is the point of view that we’ll take.

Let M be an upper bound for S.

Then M = sup(S) (M is the supremum of 9) if:

For all M, < M there is s; € S such that s; > M;

There is

q M; ‘. M = sup(S)

In terms of the analogy: If you (M;) didn’t get the best grade (M),
then there is someone (s1) who got a better grade than you (s; > M)

What this is saying is that M is really the least upper bound. Any M,
smaller than M cannot be an upper bound (since there is an element
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s1 in S bigger than it)

Examples:

(1) S = (—00,4), then sup(S) = 4.

Why? First of all, 4 is an upper bound for S. Now suppose
M, < 4 then we want to find (WTF) s; € S such that s; > M;.

l

M; S1 4

| ——0
Mi1+4
2

Let s; = 245 (midpoint between M; and 4) then s; € S (since
s1 < 4) but also s; > M; (by construction) v/

Note: So in this sense 4 is the “maximum” of S, even though
it’s technically not in S

(2) S =10,1], then sup(S) = 1.

Why? 1 is an upper bound, and if M; < 1,let s =1¢€ 5,
then s1 =1 > M; (since M; < 1) v
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M1 Sl

O 1

In fact, if max(.S) exists, then sup(S) = max(S), but the point
is that sup(S) is more general than a max.

(3) (extra practice, useful for the HW)

S:{l—l,nEN}
n

1
S1 I * °
¢ . |
M; . :
|
- - i
n

Claim: sup(S) =1

Why? 1 is an upper bound since 1 — % < 1 for all n. Now let
M; < 1, need to find s; € S such that s; > M;. Then notice:
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1
1——>M,;
n
1
& — <1 - M,
n
=n > L
n
1— M,
So let n be any integer greater than ﬁ > (0 andlet sy =1— %,

then by the above we get 51 =1 — % > M v

4. THE LEAST UPPER BOUND PROPERTY

Video: Least Upper Bound Property

Note: What makes sup so special? Remember that max(S) doesn’t
always exist. For instance, in the case S = [0, 4), max(S) doesn’t exist.

But this is not the case with sup. The following theorem, which is re-
ally the fundamental theorem of analysis, says that sup(S) always
exists{]

Least Upper Bound Property

If S is a nonempty subset of R that is bounded above, then S has
a least upper bound, that is sup(S) exists.

Think of this theorem as saying “sup(.S) always exists.” Because either
S is bounded above (in which case sup(S) exists), or S is unbounded

IThe book calls it the Completeness Axiom


https://youtu.be/OQ0HBjq8OWE
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(in which case sup(S) = o)

Note: Geometrically, this theorem is saying that R is complete, that
is it does not have any gaps/holes.

Non-Example: The property is NOT true for Q. Let:

S={reQ|z’<2}

Then S is bounded abovﬂ by 3., but it doesn’t have a least upper
bound in Q because sup(S) = v/2 but v/2 isn’t in Q.

In some sense, Q is broken: It has holes and gaps where the sup is
supposed to be!

Q has holes
S sup(S) (not in Q) Q

R has no holes
S sup(S) (in R)

No Gap

\/73

2Because if z > 3, then 22 > 9 > 2, so x cannot be in S, so by the contrapositive z € S = 2 < 3
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R doesn’t have that problem, it is complete, it has no holes, the sup
is exactly where it’s supposed to be!

Fun Fact: It’s always possible to fix a broken heart; it’s always pos-
sible to complete a space with holes.

5. INFIMUM

Video: Infimum ]

On the other side of the coin, there is the concept of Infimum, which
is a generalization of minimum.

Analogy: If you didn’t get the lowest grade, then someone got a lower
grade than you.

Let m be a lower bound for S. Then m = inf(S) (m is the
infimum of 5) if:

For all m; > m there is s; € S such that s; < my

There is

Examples:


https://youtu.be/5sIb4_iYCww
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(1) S = (3,00), then inf(S) =3

Why? First, 3 is a lower bound. Now suppose m; > 3, need to
find s; € (3,00) such that s; < my. Again, s; = 3*% (midpoint
between 3 and m;) does the trick v/

O w
WV

(2) If S = 10,1], inf(S) = 0 (similar to before) In fact if min(5)
exists, then inf(S) = min(S), so inf is a generalization of min

(3) (extra practice)

. 11
S:{<*% eN}: 1,2, =42,
A 3' ™5

We claim that inf(S) = 0. First, 0 is a lower bound since
n(=1" > 0 for all n. Now suppose m; > 0 (= m), need to show
that there is s; € S such that s; < my. That is, need to find n
such that n=V" < m.

Notice that even powers of n just give bigger and bigger numbers
like 1, 2,4 but odd powers give smaller and smaller numbers

1" 1 _ 1 1

Suppose n is odd, then n(-Y" = n~! = L and moreover + <
n n

my e n >+
my
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Hence let n be any odd integer > mL then if n=1" € S but

17
n(il)n >my v

6. INF vsS Sup

Video: inf(S) = —sup(—295)

Are inf and sup related? Yes, in a really elegant way!

If S is any subset of R,then

—S={-z|x €S}
(In other words, reflect S across the origin)

Example: If S = [1,3] then —S = [-3, —1]

-3 -x -1 0 1 X 3
S R e L
—-S S
Notice: In this example, inf(S) = 1, but also sup(—S) = —1, so

inf(S) = —sup(—.95), and in fact this is always true:


https://youtu.be/x0ZweOLCWek
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Important Fact (memorize!)

inf(S) = —sup(—9)

-S O S

sup(-S) - iI;f(S)
e A
Opposites

\'4

What this is saying is that anything that is true about sup is also true
for inf. We’ll see a consequence below.

Proof of Important Fact:

Let |m = —sup(—295)

Then inf(S) = —sup(—S) < inf(S) = m.

In order to show inf(S) = m, we need to show S is bounded below by
m (skipﬁ) and: If mq > m then there is s; € S such that s; < m;.

3Since sup(—S) = —m, —S is bounded above by —m, so for all (—s) € =S, —s < —-m = s>m
forall s € §
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m e S
— I
S1
-m; _S
| . .
| s' -m

Suppose m; > m. Then —my; < —m = sup(—S), so by definition of
sup, there is ' € —S such that s > —m;.

But by definition of —S, s’ = —s; for some s; € S.

Then this s; works because s’ > —m; = —s1 > —m; = s1 < myq,
which is what we wanted to show L]

Why useful? This basically says that you never have to prove state-
ments with inf: Just prove the version with sup and use this theorem.
In fact, let’s illustrate this with:

Greatest Lowest Bound Property

If S is a nonempty subset of R that is bounded below, then inf(.S)
exists.

Proof: Suppose S is a nonempty subset that is bounded below by m,
then for all s € S, s > m > —o0, so for all s € S, —s < —m. This
says that —S is bounded above by —m < oc.
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By the Least Upper Bound Property, sup(—S) exists, and therefore
inf(S) exists because

inf(S) = —sup(—95) O

Exists
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