LECTURE 3: THE COMPLETENESS AXIOM (I)

Today: We'll discuss the single most important concept in this course: The Supremum of a set. It's basically a more relaxed version of a maximum, so let's cover that first.

1. Maximum and Minimum

Video: Max and Min

Scenario: Suppose I tell you: "You're the best student in the class." This means that you're better than all the other students in the class. Same with maximum:

Definition:

Let S be a nonempty subset of \mathbb{R}.
We say s_{0} is the maximum of S and write $s_{0}=\max S$ if
(1) $s_{0} \in S$
(2) For all $s \in S, s \leq s_{0}$

Similar for $\min S$ (but this time $s \geq s_{0}$)

Examples:

(1) $S=\{1,2,3,4\}$, then $\max S=4$
(2) $S=[0,1]$, then $\max S=1$ and $\min S=0$
(3) $\min \mathbb{N}=1$, but \mathbb{N} has no max:

Why? Suppose $\max \mathbb{N}=n_{0}$, then by definition $n \leq n_{0}$ for all $n \in \mathbb{N}$. But let $n=n_{0}+1$ to get $\underbrace{n_{0}+1}_{n} \leq n_{0} \Rightarrow \Leftarrow$

(4) (extra practice)

$$
S=\left\{n^{(-1)^{n}} \mid n \in \mathbb{N}\right\}=\left\{1^{-1}, 2^{1}, 3^{-1}, 4^{1}, \cdots\right\}=\left\{1,2, \frac{1}{3}, 4, \frac{1}{5}, 6, \cdots\right\}
$$

Then S has no max: Suppose $\max S=s_{0}$, then by definition for all $n \in \mathbb{N}, n^{(-1)^{n}} \leq s_{0}$ for all n.

But then let n be any even integer that is greater than s_{0}, then $n^{(-1)^{n}}=n>s_{0}$ which contradicts $n^{(-1)^{n}} \leq s_{0} \Rightarrow \Leftarrow$
(Also S has no min, but we'll come back to that later)

Important Note:
 It's important that max S be an element S (it's part of the definition of max).

(5) $S=[0,4$). Then $\min S=0$, but max S doesn't exist (it cannot be 4 because $4 \notin S)$.

Why? Suppose max $S=s_{0}$. Then for all $s \in S, s \leq s_{0}$. But then let $s=\frac{s_{0}+4}{2} \in S$ (midpoint of s_{0} and 4), then by construction $s>s_{0}$, but this contradicts $s \leq s_{0} \Rightarrow \Leftarrow$

This is really bothersome though! Intuitively 4 should be the max of S, but the only reason it isn't is because here 4 is not in S

Question:

Is there a way to relax the notion of \max so that $\max [0,4)=4$? (even though 4 is not in it)

It turns out there is, and it's called the sup!

2. Upper and Lower Bounds

Video: Upper Bound

The notion of sup has to do upper bounds, which we'll define now:

Definition:

Let S be a nonempty subset of \mathbb{R}. Then:
(1) S is bounded above by $M<\infty$ if $s \leq M$ for all $s \in S$. We call M an upper bound for S
(2) S is bounded below by $m>-\infty$ is $s \geq m$ for all $s \in S$. We call m a lower bound for S
(3) Finally, S is bounded if it is both bounded above and below.

Bounded
 above

S
 M

Bounded below
m
S

Bounded
m
M

Examples:

(1) \mathbb{N} is bounded below by 1 but not bounded above, so \mathbb{N} is unbounded.
(2) $S=[0,4)$ is bounded above by 4 since $s \leq 4$ for all $s \in S$. It is also bounded below by 0 since $s \geq 0$ for all $s \in S$. Hence S is bounded

Remark: The upper bound M doesn't have to be in S; that's what makes this so great!

Important Observation: 4 is an upper bound for S, but there are many other upper bounds for S, like $5,6,7.5$, and in fact any number ≥ 4 is an upper bound for S.

Intuitively it seems that 4 is the "optimal" upper bound. And in fact, among all the possible upper bounds of $S, 4$ is the smallest one. This finally brings us to the concept of sup, also called the least upper bound:

3. SUPREMUM

Video: What's Sup?

Intuitively: $\sup (S)$ is the smallest possible upper bound for S (like 4 in the previous example).

The book in fact takes that to be the definition of sup, but the definition below is more widely used in analysis.

Analogy: Suppose I tell you: "You did not get the highest grade in the course?" Your first reaction should be: "Who got a higher grade than me?" And this is the point of view that we'll take.

Definition:

Let M be an upper bound for S.
Then $M=\sup (S)(M$ is the supremum of $S)$ if:
For all $M_{1}<M$ there is $s_{1} \in S$ such that $s_{1}>M_{1}$

There is

In terms of the analogy: If you $\left(M_{1}\right)$ didn't get the best grade (M), then there is someone $\left(s_{1}\right)$ who got a better grade than you $\left(s_{1}>M_{1}\right)$

What this is saying is that M is really the least upper bound. Any M_{1} smaller than M cannot be an upper bound (since there is an element
s_{1} in S bigger than it)

Examples:

(1) $S=(-\infty, 4)$, then $\sup (S)=4$.

Why? First of all, 4 is an upper bound for S. Now suppose $M_{1}<4$ then we want to find (WTF) $s_{1} \in S$ such that $s_{1}>M_{1}$.

Let $s_{1}=\frac{M_{1}+4}{2}$ (midpoint between M_{1} and 4) then $s_{1} \in S$ (since $s_{1}<4$) but also $s_{1}>M_{1}$ (by construction) \checkmark

Note: So in this sense 4 is the "maximum" of S, even though it's technically not in S
(2) $S=[0,1]$, then $\sup (S)=1$.

Why? 1 is an upper bound, and if $M_{1}<1$, let $s_{1}=1 \in S$, then $s_{1}=1>M_{1}\left(\right.$ since $\left.M_{1}<1\right) \checkmark$

In fact, if $\max (S)$ exists, then $\sup (S)=\max (S)$, but the point is that $\sup (S)$ is more general than a max.
(3) (extra practice, useful for the HW)

$$
S=\left\{1-\frac{1}{n}, n \in \mathbb{N}\right\}
$$

Claim: $\sup (S)=1$
Why? 1 is an upper bound since $1-\frac{1}{n} \leq 1$ for all n. Now let $M_{1}<1$, need to find $s_{1} \in S$ such that $s_{1}>M_{1}$. Then notice:

$$
\begin{aligned}
1 & -\frac{1}{n}>M_{1} \\
\Leftrightarrow & \frac{1}{n}<1-M_{1} \\
& \Leftrightarrow n>\frac{1}{1-M_{1}}
\end{aligned}
$$

So let n be any integer greater than $\frac{1}{1-M_{1}}>0$ and let $s_{1}=1-\frac{1}{n}$, then by the above we get $s_{1}=1-\frac{1}{n}>M_{1} \checkmark$

4. The Least Upper Bound Property

Video: Least Upper Bound Property
Note: What makes sup so special? Remember that $\max (S)$ doesn't always exist. For instance, in the case $S=[0,4), \max (S)$ doesn't exist.

But this is not the case with sup. The following theorem, which is really the fundamental theorem of analysis, says that $\sup (S)$ always exists: ${ }^{1}$

Least Upper Bound Property

If S is a nonempty subset of \mathbb{R} that is bounded above, then S has a least upper bound, that is $\sup (S)$ exists.

Think of this theorem as saying " $\sup (S)$ always exists." Because either S is bounded above (in which case $\sup (S)$ exists), or S is unbounded

[^0](in which case $\sup (S)=\infty$)
Note: Geometrically, this theorem is saying that \mathbb{R} is complete, that is it does not have any gaps/holes.

Non-Example: The property is NOT true for \mathbb{Q}. Let:

$$
S=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\}
$$

Then S is bounded above ${ }^{2}$ by 3., but it doesn't have a least upper bound in \mathbb{Q} because $\sup (S)=\sqrt{2}$ but $\sqrt{2}$ isn't in \mathbb{Q}.

In some sense, \mathbb{Q} is broken: It has holes and gaps where the sup is supposed to be!
Q has holes

R has no holes

[^1]\mathbb{R} doesn't have that problem, it is complete, it has no holes, the sup is exactly where it's supposed to be!

Fun Fact: It's always possible to fix a broken heart; it's always possible to complete a space with holes.

5. Infimum

Video: Infimum

On the other side of the coin, there is the concept of Infimum, which is a generalization of minimum.

Analogy: If you didn't get the lowest grade, then someone got a lower grade than you.

Definition:

Let m be a lower bound for S. Then $m=\inf (S)$ (m is the infimum of S) if:

For all $m_{1}>m$ there is $s_{1} \in S$ such that $s_{1}<m_{1}$

There is

Examples:

(1) $S=(3, \infty)$, then $\inf (S)=3$

Why? First, 3 is a lower bound. Now suppose $m_{1}>3$, need to find $s_{1} \in(3, \infty)$ such that $s_{1}<m_{1}$. Again, $s_{1}=\frac{3+m_{1}}{2}$ (midpoint between 3 and m_{1}) does the trick \checkmark

(2) If $S=[0,1], \inf (S)=0$ (similar to before) In fact if $\min (S)$ exists, then $\inf (S)=\min (S)$, so \inf is a generalization of min
(3) (extra practice)

$$
S=\left\{n^{(-1)^{n}}, n \in \mathbb{N}\right\}=\left\{1,2, \frac{1}{3}, 4, \frac{1}{5}, \ldots\right\}
$$

We claim that $\inf (S)=0$. First, 0 is a lower bound since $n^{(-1)^{n}} \geq 0$ for all n. Now suppose $m_{1}>0(=m)$, need to show that there is $s_{1} \in S$ such that $s_{1}<m_{1}$. That is, need to find n such that $n^{(-1)^{n}}<m_{1}$.

Notice that even powers of n just give bigger and bigger numbers like $1,2,4$ but odd powers give smaller and smaller numbers Suppose n is odd, then $n^{(-1)^{n}}=n^{-1}=\frac{1}{n}$, and moreover $\frac{1}{n}<$ $m_{1} \Leftrightarrow n>\frac{1}{m_{1}}$

Hence let n be any odd integer $>\frac{1}{m_{1}}$, then if $n^{(-1)^{n}} \in S$ but $n^{(-1)^{n}}>m_{1} \checkmark$

6. Inf vs Sup

Video: $\inf (S)=-\sup (-S)$
Are inf and sup related? Yes, in a really elegant way!

Definition:

If S is any subset of \mathbb{R}, then

$$
-S=\{-x \mid x \in S\}
$$

(In other words, reflect S across the origin)
Example: If $S=[1,3]$ then $-S=[-3,-1]$

Notice: In this example, $\inf (S)=1$, but also $\sup (-S)=-1$, so $\inf (S)=-\sup (-S)$, and in fact this is always true:

$$
\begin{aligned}
& \text { Important Fact (memorize!) } \\
& \qquad \inf (S)=-\sup (-S)
\end{aligned}
$$

Opposites

What this is saying is that anything that is true about sup is also true for inf. We'll see a consequence below.

Proof of Important Fact:

Let $m=-\sup (-S)$
Then $\inf (S)=-\sup (-S) \Leftrightarrow \inf (S)=m$.
In order to show $\inf (S)=m$, we need to show S is bounded below by m (skip ${ }^{3}$) and: If $m_{1}>m$ then there is $s_{1} \in S$ such that $s_{1}<m_{1}$.

[^2]

Suppose $m_{1}>m$. Then $-m_{1}<-m=\sup (-S)$, so by definition of sup, there is $s^{\prime} \in-S$ such that $s^{\prime}>-m_{1}$.

But by definition of $-S, s^{\prime}=-s_{1}$ for some $s_{1} \in S$.
Then this s_{1} works because $s^{\prime}>-m_{1} \Rightarrow-s_{1}>-m_{1} \Rightarrow s_{1}<m_{1}$, which is what we wanted to show

Why useful? This basically says that you never have to prove statements with inf: Just prove the version with sup and use this theorem. In fact, let's illustrate this with:

Greatest Lowest Bound Property

If S is a nonempty subset of \mathbb{R} that is bounded below, then $\inf (S)$ exists.

Proof: Suppose S is a nonempty subset that is bounded below by m, then for all $s \in S, s \geq m>-\infty$, so for all $s \in S,-s \leq-m$. This says that $-S$ is bounded above by $-m<\infty$.

By the Least Upper Bound Property, $\sup (-S)$ exists, and therefore $\inf (S)$ exists because

$$
\inf (S)=-\underbrace{\sup (-S)}_{\text {Exists }}
$$

[^0]: ${ }^{1}$ The book calls it the Completeness Axiom

[^1]: ${ }^{2}$ Because if $x>3$, then $x^{2}>9 \geq 2$, so x cannot be in S, so by the contrapositive $x \in S \Rightarrow x \leq 3$

[^2]: ${ }^{3}$ Since $\sup (-S)=-m,-S$ is bounded above by $-m$, so for all $(-s) \in-S,-s \leq-m \Rightarrow s \geq m$ for all $s \in S$

