
LECTURE 3: THE COMPLETENESS AXIOM (I)

Today: We’ll discuss the single most important concept in this course:
The Supremum of a set. It’s basically a more relaxed version of a
maximum, so let’s cover that first.

1. Maximum and Minimum

Video: Max and Min

Scenario: Suppose I tell you: “You’re the best student in the class.”
This means that you’re better than all the other students in the class.
Same with maximum:

Definition:

Let S be a nonempty subset of R.

We say s0 is the maximum of S and write s0 = maxS if

(1) s0 ∈ S

(2) For all s ∈ S, s ≤ s0

Similar for minS (but this time s ≥ s0)

Date: Tuesday, September 7, 2021.
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https://youtu.be/9CyQ8bW210Y
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Examples:

(1) S = {1, 2, 3, 4}, then maxS = 4

(2) S = [0, 1], then maxS = 1 and minS = 0

(3) minN = 1, but N has no max:

Why? Suppose maxN = n0, then by definition n ≤ n0 for all
n ∈ N. But let n = n0 + 1 to get n0 + 1︸ ︷︷ ︸

n

≤ n0 ⇒⇐

(4) (extra practice)
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S =
{
n(−1)n | n ∈ N

}
=

{
1−1, 21, 3−1, 41, · · ·

}
=

{
1, 2,

1

3
, 4,

1

5
, 6, · · ·

}

Then S has no max: Suppose maxS = s0, then by definition
for all n ∈ N, n(−1)n ≤ s0 for all n.

But then let n be any even integer that is greater than s0, then
n(−1)n = n > s0 which contradicts n(−1)n ≤ s0 ⇒⇐

(Also S has no min, but we’ll come back to that later)
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Important Note:

It’s important that maxS be an element S (it’s part of the
definition of max).

(5) S = [0, 4). Then minS = 0, but maxS doesn’t exist (it cannot
be 4 because 4 /∈ S).

Why? Suppose maxS = s0. Then for all s ∈ S, s ≤ s0.
But then let s = s0+4

2 ∈ S (midpoint of s0 and 4), then by
construction s > s0, but this contradicts s ≤ s0 ⇒⇐

This is really bothersome though! Intuitively 4 should be the max of
S, but the only reason it isn’t is because here 4 is not in S

Question:

Is there a way to relax the notion of max so that max[0, 4) = 4?
(even though 4 is not in it)

It turns out there is, and it’s called the sup!
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2. Upper and Lower Bounds

Video: Upper Bound

The notion of sup has to do upper bounds, which we’ll define now:

Definition:

Let S be a nonempty subset of R. Then:

(1) S is bounded above by M < ∞ if s ≤ M for all s ∈ S.
We call M an upper bound for S

(2) S is bounded below by m > −∞ is s ≥ m for all s ∈ S.
We call m a lower bound for S

(3) Finally, S is bounded if it is both bounded above and
below.

https://youtu.be/-Sho-sphi9s
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Examples:

(1) N is bounded below by 1 but not bounded above, so N is un-
bounded.

(2) S = [0, 4) is bounded above by 4 since s ≤ 4 for all s ∈ S. It is
also bounded below by 0 since s ≥ 0 for all s ∈ S. Hence S is
bounded

Remark: The upper bound M doesn’t have to be in S; that’s
what makes this so great!

Important Observation: 4 is an upper bound for S, but there
are many other upper bounds for S, like 5, 6, 7.5, and in fact any
number ≥ 4 is an upper bound for S.

Intuitively it seems that 4 is the “optimal” upper bound. And in
fact, among all the possible upper bounds of S, 4 is the smallest
one. This finally brings us to the concept of sup, also called the
least upper bound:

3. Supremum

Video: What’s Sup?

https://youtu.be/lZEcsOn6qUA
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Intuitively: sup(S) is the smallest possible upper bound for S (like 4
in the previous example).

The book in fact takes that to be the definition of sup, but the defini-
tion below is more widely used in analysis.

Analogy: Suppose I tell you: “You did not get the highest grade in
the course?” Your first reaction should be: “Who got a higher grade
than me?” And this is the point of view that we’ll take.

Definition:

Let M be an upper bound for S.

Then M = sup(S) (M is the supremum of S) if:

For all M1 < M there is s1 ∈ S such that s1 > M1

In terms of the analogy: If you (M1) didn’t get the best grade (M),
then there is someone (s1) who got a better grade than you (s1 > M1)

What this is saying is that M is really the least upper bound. Any M1

smaller than M cannot be an upper bound (since there is an element
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s1 in S bigger than it)

Examples:

(1) S = (−∞, 4), then sup(S) = 4.

Why? First of all, 4 is an upper bound for S. Now suppose
M1 < 4 then we want to find (WTF) s1 ∈ S such that s1 > M1.

Let s1 =
M1+4

2 (midpoint between M1 and 4) then s1 ∈ S (since
s1 < 4) but also s1 > M1 (by construction) ✓

Note: So in this sense 4 is the “maximum” of S, even though
it’s technically not in S

(2) S = [0, 1], then sup(S) = 1.

Why? 1 is an upper bound, and if M1 < 1, let s1 = 1 ∈ S,
then s1 = 1 > M1 (since M1 < 1) ✓
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In fact, if max(S) exists, then sup(S) = max(S), but the point
is that sup(S) is more general than a max.

(3) (extra practice, useful for the HW)

S =

{
1− 1

n
, n ∈ N

}

Claim: sup(S) = 1

Why? 1 is an upper bound since 1− 1
n ≤ 1 for all n. Now let

M1 < 1, need to find s1 ∈ S such that s1 > M1. Then notice:
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1− 1

n
>M1

⇔ 1

n
<1−M1

⇔ n >
1

1−M1

So let n be any integer greater than 1
1−M1

> 0 and let s1 = 1− 1
n ,

then by the above we get s1 = 1− 1
n > M1 ✓

4. The Least Upper Bound Property

Video: Least Upper Bound Property

Note: What makes sup so special? Remember that max(S) doesn’t
always exist. For instance, in the case S = [0, 4), max(S) doesn’t exist.

But this is not the case with sup. The following theorem, which is re-
ally the fundamental theorem of analysis, says that sup(S) always
exists:1

Least Upper Bound Property

If S is a nonempty subset of R that is bounded above, then S has
a least upper bound, that is sup(S) exists.

Think of this theorem as saying “sup(S) always exists.” Because either
S is bounded above (in which case sup(S) exists), or S is unbounded

1The book calls it the Completeness Axiom

https://youtu.be/OQ0HBjq8OWE
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(in which case sup(S) = ∞)

Note: Geometrically, this theorem is saying that R is complete, that
is it does not have any gaps/holes.

Non-Example: The property is NOT true for Q. Let:

S =
{
x ∈ Q | x2 < 2

}
Then S is bounded above2 by 3., but it doesn’t have a least upper
bound in Q because sup(S) =

√
2 but

√
2 isn’t in Q.

In some sense, Q is broken: It has holes and gaps where the sup is
supposed to be!

2Because if x > 3, then x2 > 9 ≥ 2, so x cannot be in S, so by the contrapositive x ∈ S ⇒ x ≤ 3
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R doesn’t have that problem, it is complete, it has no holes, the sup
is exactly where it’s supposed to be!

Fun Fact: It’s always possible to fix a broken heart; it’s always pos-
sible to complete a space with holes.

5. Infimum

Video: Infimum

On the other side of the coin, there is the concept of Infimum, which
is a generalization of minimum.

Analogy: If you didn’t get the lowest grade, then someone got a lower
grade than you.

Definition:

Let m be a lower bound for S. Then m = inf(S) (m is the
infimum of S) if:

For all m1 > m there is s1 ∈ S such that s1 < m1

Examples:

https://youtu.be/5sIb4_iYCww
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(1) S = (3,∞), then inf(S) = 3

Why? First, 3 is a lower bound. Now suppose m1 > 3, need to
find s1 ∈ (3,∞) such that s1 < m1. Again, s1 =

3+m1

2 (midpoint
between 3 and m1) does the trick ✓

(2) If S = [0, 1], inf(S) = 0 (similar to before) In fact if min(S)
exists, then inf(S) = min(S), so inf is a generalization of min

(3) (extra practice)

S =
{
n(−1)n, n ∈ N

}
=

{
1, 2,

1

3
, 4,

1

5
, . . .

}
We claim that inf(S) = 0. First, 0 is a lower bound since
n(−1)n ≥ 0 for all n. Now suppose m1 > 0 (= m), need to show
that there is s1 ∈ S such that s1 < m1. That is, need to find n
such that n(−1)n < m1.

Notice that even powers of n just give bigger and bigger numbers
like 1, 2, 4 but odd powers give smaller and smaller numbers

Suppose n is odd, then n(−1)n = n−1 = 1
n , and moreover 1

n <

m1 ⇔ n > 1
m1



14 LECTURE 3: THE COMPLETENESS AXIOM (I)

Hence let n be any odd integer > 1
m1

, then if n(−1)n ∈ S but

n(−1)n > m1 ✓

6. Inf vs Sup

Video: inf(S) = − sup(−S)

Are inf and sup related? Yes, in a really elegant way!

Definition:

If S is any subset of R,then

−S = {−x | x ∈ S}

(In other words, reflect S across the origin)

Example: If S = [1, 3] then −S = [−3,−1]

Notice: In this example, inf(S) = 1, but also sup(−S) = −1, so
inf(S) = − sup(−S), and in fact this is always true:

https://youtu.be/x0ZweOLCWek
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Important Fact (memorize!)

inf(S) = − sup(−S)

What this is saying is that anything that is true about sup is also true
for inf. We’ll see a consequence below.

Proof of Important Fact:

Let m = − sup(−S)

Then inf(S) = − sup(−S) ⇔ inf(S) = m.

In order to show inf(S) = m, we need to show S is bounded below by
m (skip3) and: If m1 > m then there is s1 ∈ S such that s1 < m1.

3Since sup(−S) = −m, −S is bounded above by −m, so for all (−s) ∈ −S, −s ≤ −m ⇒ s ≥ m
for all s ∈ S
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Suppose m1 > m. Then −m1 < −m = sup(−S), so by definition of
sup, there is s′ ∈ −S such that s′ > −m1.

But by definition of −S, s′ = −s1 for some s1 ∈ S.

Then this s1 works because s′ > −m1 ⇒ −s1 > −m1 ⇒ s1 < m1,
which is what we wanted to show □

Why useful? This basically says that you never have to prove state-
ments with inf: Just prove the version with sup and use this theorem.
In fact, let’s illustrate this with:

Greatest Lowest Bound Property

If S is a nonempty subset of R that is bounded below, then inf(S)
exists.

Proof: Suppose S is a nonempty subset that is bounded below by m,
then for all s ∈ S, s ≥ m > −∞, so for all s ∈ S, −s ≤ −m. This
says that −S is bounded above by −m < ∞.
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By the Least Upper Bound Property, sup(−S) exists, and therefore
inf(S) exists because

inf(S) = − sup(−S)︸ ︷︷ ︸
Exists

□
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