LECTURE 3: THE CROSS PRODUCT

Today: We learn about a cool new way of multiplying vectors, called the cross product. This uses the concept of a determinant, which I define first.

1. Determinants

Video: Determinants and Bomberman

Video: Area of a Parallelogram

Definition: (2×2 determinant)

$$
\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Example 1:

$$
\left|\begin{array}{ll}
5 & 3 \\
2 & 4
\end{array}\right|=(5)(4)-(2)(3)=14
$$

Determinants arise naturally in calculating areas of parallelograms

Example 2:

Find the area of the parallelogram with sides $\mathbf{a}=\langle 2,4\rangle$ and $\mathbf{b}=\langle 3,1\rangle$

[^0]Calculate the determinant with rows $\langle 2,4\rangle$ and $\langle 3,1\rangle$:

$$
\left|\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right|=(2)(1)-(3)(4)=-10
$$

Therefore the area is $|-10|=10$
Don't forget about the absolute value (which makes sense, since areas are positive)
For 3×3 determinants, the formula is slightly more complicated:

Example 3: (3×3 Determinants)

Calculate the following determinant:

$$
\left|\begin{array}{lll}
2 & 0 & 3 \\
1 & 2 & 1 \\
4 & 1 & 2
\end{array}\right|
$$

STEP 1: Here we will expand the determinant along the first row, meaning that the answer will be of the form:

$$
\left|\begin{array}{lll}
2 & 0 & 3 \\
1 & 2 & 1 \\
4 & 1 & 2
\end{array}\right|=+2 \times\left|\begin{array}{cc}
? & ? \\
? & ?
\end{array}\right|-0 \times\left|\begin{array}{cc}
? & ? \\
? & ?
\end{array}\right|+3 \times\left|\begin{array}{cc}
? & ? \\
? & ?
\end{array}\right|
$$

(Here the signs are always,,+-+ and the numbers 2, 0,3 are the entries from the first row)

STEP 2: How to fill out the?
It's Bomberman time!!!

Analogy: In the video game Super Bomberman, the main character places a bomb, which destroys everything in the same row and column as the bomb, as follows:

It's the same thing with determinants: You first place a bomb at 2 (the first entry) and take the determinant of the rest, that is $\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|$, then you place a bomb at 0 to get $\left|\begin{array}{ll}1 & 1 \\ 4 & 2\end{array}\right|$ and finally you place a bomb at 3 to get $\left|\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right|$

Therefore we get:

$$
\begin{aligned}
\left|\begin{array}{lll}
2 & 0 & 3 \\
1 & 2 & 1 \\
4 & 1 & 2
\end{array}\right| & =+2\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|-0\left|\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right|+3\left|\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\right| \\
& =2(4-1)-0(2-4)+3(1-8) \\
& =6-21 \\
& =-15
\end{aligned}
$$

Example 4: (extra practice)

Calculate the following determinant:
$\left|\begin{array}{lll}3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4\end{array}\right|$

$$
\begin{aligned}
\left|\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right| & =+3\left|\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right|-6\left|\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right|+7\left|\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right| \\
& =3(8-3)-6(-2)+7(-4) \\
& =15+12-28 \\
& =-1
\end{aligned}
$$

Appliction: Just like 2×2 determinants are used to calculate areas of parallelograms, 3×3 determinants are used to calculate volumes of parallelipipeds.

Example 5: (Application)

Find the volume of the parallelipiped with sides $\mathbf{a}=\langle 1,2,3\rangle, \mathbf{b}=$ $\langle 1,-1,-2\rangle, \mathbf{c}=\langle 2,1,4\rangle$

First calculate the determinant whose rows are $\mathbf{a}, \mathbf{b}, \mathbf{c}$:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & -2 \\
2 & 1 & 4
\end{array}\right| & =1\left|\begin{array}{cc}
-1 & -2 \\
1 & 4
\end{array}\right|-2\left|\begin{array}{cc}
1 & -2 \\
2 & 4
\end{array}\right|+3\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right| \\
& =(-4+2)-2(4+4)+3(1+2) \\
& =-2-16+9 \\
& =-9
\end{aligned}
$$

Then the volume is $|-9|=9$
Note: The book uses the formula $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$ (where \times is the cross product), but this one is a bit easier to use.

2. Cross Products

Using the determinant, we can finally define the concept of a cross product.
Intuitively: Given two vectors \mathbf{a} and $\mathbf{b}, \mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}

Example 6:

Calculate $\mathbf{a} \times \mathbf{b}$, where $\mathbf{a}=\langle 1,2,3\rangle$ and $\mathbf{b}=\langle 4,5,6\rangle$

The cross product is just a special determinant
(recall that $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle, \mathbf{k}=\langle 0,0,1\rangle$)

Definition:

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right|
$$

Which here becomes:

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\mathbf{i}\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right| \\
& =\mathbf{i}(12-15)-\mathbf{j}(6-12)+\mathbf{k}(5-8) \\
& =-3 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k} \\
& =\langle-3,6,-3\rangle
\end{aligned}
$$

Important: $\mathbf{a} \times \mathbf{b}$ is a vector, not a number. It is a vector that is perpendicular to both \mathbf{a} and \mathbf{b}. In fact you can check that $\langle 3,6,-3\rangle$ is perpendicular to both $\langle 1,2,3\rangle$ and $\langle 4,5,6\rangle$ (the dot product is 0)

Example 7: (extra practice)

Calculate $\mathbf{a} \times \mathbf{b}$, where $\mathbf{a}=\langle 2,-1,3\rangle$ and $\mathbf{b}=\langle 4,2,1\rangle$

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 3 \\
4 & 2 & 1
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
-1 & 3 \\
2 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
2 & 3 \\
4 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
2 & -1 \\
4 & 2
\end{array}\right| \\
& =\mathbf{i}(-1-6)-\mathbf{j}(2-12)+\mathbf{k}(4+4) \\
& =-7 \mathbf{i}+10 \mathbf{j}+8 \mathbf{k} \\
& =\langle-7,10,8\rangle
\end{aligned}
$$

3. Properties

Why is the cross product so useful?

Single Most Important Property

$\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}

In particular, this allows us to find a vector that is perpendicular to two other ones. This will be SUPER useful when we'll talk about planes (in a couple of lectures).

Example 8:

Find a vector perpendicular to both $\mathbf{a}=\langle 0,1,7\rangle$ and $\mathbf{b}=\langle 2,-1,4\rangle$

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 7 \\
2 & -1 & 4
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
1 & 7 \\
-1 & 4
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
0 & 7 \\
2 & 4
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right| \\
& =\mathbf{i}(4+7)-\mathbf{j}(-14)+\mathbf{k}(-2) \\
& =11 \mathbf{i}+14 \mathbf{j}-2 \mathbf{k} \\
& =\langle 11,14,-2\rangle
\end{aligned}
$$

Note: The direction of $\mathbf{a} \times \mathbf{b}$ is determined by the right-hand-rule: If you curl your hand from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

Other Properties (not as important)

(1) Parallel: (here $\mathbf{0}=\langle 0,0,0\rangle$)

$$
\mathbf{a} \times \mathbf{b}=\mathbf{0} \Leftrightarrow \mathbf{a} \text { and } \mathbf{b} \text { are parallel }
$$

(2) $\mathbf{a} \times \mathbf{a}=\mathbf{0}$ (since \mathbf{a} is parallel to itself)
(3) $\mathbf{b} \times \mathbf{a}=-\mathbf{a} \times \mathbf{b}$
(4) $\mathbf{i} \times \mathbf{j}=\mathbf{k}$
(5) Angle Formula:

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta)
$$

(Where θ is the angle between \mathbf{a} and \mathbf{b})

4. Areas of a parallelogram (again)

Surprisingly, we can also use cross products to calculate areas of parallelograms, but this time in 3 dimensions:

Example 9:

Find the area of the paralellogram with sides $\mathbf{a}=\langle 1,1,-1\rangle$ and $\mathbf{b}=\langle 2,4,6\rangle$

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & -1 \\
2 & 4 & 6
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
1 & -1 \\
4 & 6
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
1 & -1 \\
2 & 6
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
1 & 1 \\
2 & 4
\end{array}\right| \\
& =\mathbf{i}(6+4)-\mathbf{j}(6+2)+\mathbf{k}(4-2) \\
& =10 \mathbf{i}-8 \mathbf{j}+2 \mathbf{k} \\
& =\langle 10,-8,2\rangle
\end{aligned}
$$

Fact:

$$
\text { Area of parallelogram }=\|\mathbf{a} \times \mathbf{b}\|
$$

So here the answer is

$$
\sqrt{10^{2}+(-8)^{2}+2^{2}}=\sqrt{100+64+4}=\sqrt{168}
$$

Why? (will probably skip) The reason for this is surprisingly elegant!

Consider the parallelogram with sides \mathbf{a} and \mathbf{b}.
The area of the parallelogram is given by:

$$
\text { Area }=\text { Base } \times \text { Height }
$$

From the picture above, we have Base $=\|\mathbf{a}\|$
Moreover, from SOHCAHTOA, we have

$$
\sin (\theta)=\frac{\text { Height }}{\|\mathbf{b}\|} \Rightarrow \text { Height }=\|\mathbf{b}\| \sin (\theta)
$$

Therefore the area of the parallelogram becomes

$$
\text { Base } \times \text { Height }=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta)=\|\mathbf{a} \times \mathbf{b}\|
$$

Where in the last step we used the Angle formula for cross-products

5. Torque

Finally, cross products appear naturally in physics as the torque of an object.
Setting: Suppose you're applying a force \mathbf{F} to a wrench at a position \mathbf{r}

Definition:

The torque τ is $\tau=\mathbf{F} \times \mathbf{r}$

It measures the tendency of the body to rotate about the origin.

Example 10: (extra practice)

Find the torque obtained when applying a force $\mathbf{F}=\langle 1,2,1\rangle$ to a position $\mathbf{r}=\langle 3,1,5\rangle$

$$
\begin{aligned}
\tau & =\mathbf{F} \times \mathbf{r} \\
& =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
3 & 1 & 5
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
2 & 1 \\
1 & 5
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 1 \\
3 & 5
\end{array}\right| \mathbf{j}+\mathbf{k}\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right| \\
& =(10-1) \mathbf{i}-(5-3) \mathbf{j}+(1-6) \mathbf{k} \\
& =9 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k} \\
& =\langle 9,-2,-5\rangle
\end{aligned}
$$

Example 11: (extra practice)

Suppose you apply a force of 40 N to a wrench that is 0.25 m long, where the angle between the force and the position is 75 degrees. Find the magnitude of the torque.

By the Angle Formula:

$$
\begin{aligned}
\|\tau\| & =\|\mathbf{F} \times \mathbf{r}\| \\
& =\|\mathbf{F}\|\|\mathbf{r}\| \sin (\theta) \\
& =(40)(0.25) \sin \left(75^{\circ}\right) \\
& =10 \sin \left(75^{\circ}\right) \\
& \approx 9.66 \mathrm{~N} \times m \\
& =9.66 \mathrm{~J}
\end{aligned}
$$

[^0]: Date: Friday, January 3, 2021.

