
LECTURE 3: EQUICONTINUITY

1. Introduction

One of the cornerstone theorems in Analysis 1 is the celebrated Bolzano-
Weierstraß Theorem, which says:

Bolzano-Weierstraß: If (sn) is a bounded sequence of real numbers,
then (sn) has a convergent subsequence (snk)

For example, it is used to prove the Extreme Value Theorem

Question: Is B-W still true for functions? That is: if (fn) is a bounded
sequence of functions, does it have a uniformly convergent subsequence
(fnk)?

Unfortunately the answer is no /

Definition: A sequence (fn) on [a, b] is (uniformly) bounded if there
is M such that for all n and all x we have

|fn(x)| ≤M

Note: Rudin distinguishes bounded and uniformly bounded, but on
the compact interval [a, b], they’re the same thing.
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2. Counterexample

Non-Example: Consider the sequence fn(x) = sin(nx) on [0, 2π]

Then |fn(x)| = |sin(nx)| ≤ 1, so fn is bounded.

Suppose fn had a uniformly convergent subsequence fnk → f for some
f . Then

lim
k→∞

sin(nkx)− sin(nk+1x) = f(x)− f(x) = 0

Squaring this, we get

lim
k→∞

(sin(nkx)− sin(nk+1x))2 = 0

Therefore

lim
k→∞

∫ 2π

0

(sin(nkx)− sin(nk+1x))2 dx

=

∫ 2π

0

lim
k→∞

(sin(nkx)− sin(nk+1x))2︸ ︷︷ ︸
0

dx

=0

The passage of the limit inside the integral is justified by the “Bounded
Convergence Theorem,” since the integrand is bounded (see Chapter
11)

However, if you actually calculate the integral using double angle for-
mulas, you get for all k∫ 2π

0

(sin(nkx)− sin(nk+1x))2 dx = 2π 9 0
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Which is a contradiction

The result is still false even if fn converges pointwise, see Example 7.21
in Rudin.

Note: This is sometimes stated as “The unit ball in C[a, b] is not
compact.” That is although (fn) is bounded, it might not have a con-
vergent subsequence.

That said, the result is true if we have an extra assumption on the
sequence (fn), to make sure the sequence is well-behaved. That as-
sumption is called:

3. Equicontinuity

Recall: f is uniformly continuous if for all ε > 0 there is δ such
that for all x, y, if |x− y| < δ then |f(x)− f(y)| < ε.

The point is that the δ does not depend on x, it’s the same wherever
we are.

Equicontinuity just means that δ doesn’t depend on n, it’s the same
for all n:

Definition: A sequence (fn) is (uniformly) equicontinuous if for all
ε > 0 there is δ > 0 such that for all n and all x, y, if |x− y| < δ, then
|fn(x)− fn(y)| < ε

Graphical Interpretation: An equicontinuous sequence is continu-
ous in the same way, sort of like synchronous swimmers. See pictures
in lecture.
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Example: If (f ′n) is uniformly bounded, then (fn) is equicontinuous.

Why? Suppose |f ′n(x)| ≤ C for all n and all x. Let ε > 0 be given
and let δ = ε

C , then if |x− y| < δ then by the Mean-Value Theorem,
we have

|fn(x)− fn(y)| = |f ′n(c)(x− y)| = |f ′n(c)| |x− y| ≤ C |x− y| < C
( ε
C

)
= εX

Note: The same thing happens if (fn) is uniformly Lipschitz:

|fn(x)− fn(y)| ≤ C |x− y|

where C doesn’t depend on n

What does that have to do with uniform convergence? First of all:

Theorem: If (fn) is a sequence of functions on C[a, b] that converges
uniformly, then (fn) must be equicontinuous.

Proof: Let ε > 0 be given. Since (fn) converges uniformly, by the
Cauchy criterion, there is N such that if n > N , then

‖fn − fN‖ <
ε

3

Since fN is uniformly continuous, there is δ > 0 such that if |x− y| < δ
then |fN(x)− fN(y)| < ε

3 .

So if n > N and |x− y| < δ then

|fn(x)− fn(y)| ≤ |fn(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− fn(y)|

<
ε

3
+
ε

3
+
ε

3
=εX
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We’ve only done the case for n > N . To extend this for all n, you just
take the smaller one of the δ of uniform continuity of f1, f2, . . . , fN �

4. Arzelà-Ascoli Theorem

We are ready to state and prove the celebrated Arzelà-Ascoli Theorem:

Theorem: (Arzelá-Ascoli Theorem) If (fn) is a bounded and equicon-
tinuous sequence in C[a, b], then (fn) has a uniformly convergent sub-
sequence.

Note: Those kind of compactness theorems are extremely important
in PDE. For example, suppose you want to solve a hard PDE. Some-
times it’s easier to solve it approximately. In that case you get a se-
quence of approximate solutions (fn). If the compactness result holds,
you find a subsequence (fnk) that converges to some unknown function
f . And if you’re lucky, that limit function f solves your original PDE!

Proof:1

STEP 1: Fix an enumeration {x1, x2, . . . } of all the rational numbers
in [a, b]

Consider fn(x1). This is a bounded sequence of real numbers since (fn)
is bounded, so by B-W, there is a convergent subsequence fnk(x1)

Notation:

1The proof is taken from this Wikipedia article, as well as from Theorem 14 in Chapter 4 of
Pugh’s book

https://en.wikipedia.org/wiki/Arzel%C3%A0%E2%80%93Ascoli_theorem
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f0,k =fk original sequence

f1,k =fnk subsequence

f2,k = sub-subsequence (see below)

fm,k = sub-sub... sequence

m is the “depth” of the sequence, and k is the term of the sequence

Since f1,k(x2) is bounded, there is a sub-subsequence f2,k such that
f2,k(x2) converges. Notice f2,k converges as x1 as well. So f2,k con-
verges at x1 and x2

That way we obtain a tower of subsequences

fn ⊇ f1,k ⊇ f2,k ⊇ . . .

Such that fm,k converges at x1, x2, . . . , xm (see the picture in lecture)

STEP 2: Consider the diagonal subsequence gm =: fm,m, which is the
m-th term of the m-th subsequence.

By construction, gm converges at every rational point.

Claim: (gm) converges uniformly.

Then we would be done because then (gm) is a subsequence of (fn)
that converges uniformly.

STEP 3: Proof of Claim: We will show that (gm) is Cauchy.

Here is where equicontinuity kicks in:



LECTURE 3: EQUICONTINUITY 7

Let ε > 0 be given.

By equicontinuity there is δ > 0 such that for all x, y and all m:

|x− y| < δ ⇒ |gm(x)− gm(y)| < ε

3

Intuitively: Rational points are good (because gm converges on them)
and δ is good (because of continuity), it makes sense to cover [a, b] with
balls centered at rational points and radius δ:

Consider the balls (intervals) B(x1, δ), B(x2, δ), . . . They cover [a, b]
so by compactness there is a finite sub-cover, which we’ll relabel as
B(x1, δ), B(x2, δ), . . . , B(xI , δ).

Since gm(xi) converges for each xi as above, it is Cauchy, so there is N
such that for all m,n > N and all i = 1, 2, . . . , I

|gm(xi)− gn(xi)| <
ε

3
Now we’re ready to conclude!

With the same N , if m,n > N and x ∈ [a, b], choose xi as above such
that |xi − x| < δ (can do that by def of a cover) then

|gm(x)− gn(x)| ≤ |gm(x)− gm(xi)|+ |gm(xi)− gn(xi)|+ |gn(xi)− gn(x)|

<
ε

3
+
ε

3
+
ε

3
= εX

(By equicontinuity, Cauchiness, and equicontinuity)

This is all I have to say about uniform convergence! The next 3 mini-
topics have more to do with functions in general.
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