LECTURE 31: VECTOR FIELDS

Welcome to the final chapter of your final calculus course! Like all boss battles, this chapter is unbelievably hard, but also unbelievably exciting!

Today: A very gentle introduction to vector fields, just to show you how awesome they are!

1. Vector Fields

Definition:

A vector field \mathbf{F} is a function that associates to each point (x, y) a vector $\mathbf{F}(x, y)$

Really abstract definition, but a picture says 1000 words:

Example 1:

Sketch $\mathbf{F}(x, y)=\langle x, y\rangle$

$$
\begin{aligned}
\mathbf{F}(1,1) & =\langle 1,1\rangle \\
\mathbf{F}(3,1) & =\langle 3,1\rangle \\
\mathbf{F}(2,2) & =\langle 2,2\rangle \\
\mathbf{F}(-3,1) & =\langle-3,1\rangle
\end{aligned}
$$

Date: Monday, November 8, 2021.

So a vector field is just a bunch of vectors.
Many applications: Force Field, Velocity Field, Gravitational Field, Electrostatic Field, Emotional Attraction...

Example 2:

Sketch $\mathbf{F}(x, y)=\langle-y, x\rangle$

$$
\begin{aligned}
\mathbf{F}(1,0) & =\langle-0,1\rangle=\langle 0,1\rangle \\
\mathbf{F}(0,1) & =\langle-1,0\rangle \\
\mathbf{F}(-1,0) & =\langle 0,-1\rangle \\
\mathbf{F}(0,-1) & =\langle 1,0\rangle
\end{aligned}
$$

$$
F(x, y)=<-y, x\rangle
$$

Note: Indeed, we have

$$
\mathbf{F}(x, y) \cdot\langle x, y\rangle=\langle-y, x\rangle \cdot\langle x, y\rangle=-y x+x y=0
$$

So $\mathbf{F}(x, y)$ is perpendicular to $\langle x, y\rangle$

Alternate notation:

$$
\mathbf{F}(x, y)=\langle-y, x\rangle=-y \mathbf{i}+x \mathbf{j}
$$

Where $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$

Example 3:

Sketch the following vector field:

$$
\begin{aligned}
\mathbf{F}(x, y) & =\left(-\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \mathbf{i}+\left(-\frac{y}{\sqrt{x^{2}+y^{2}}}\right) \mathbf{j} \\
& =\left\langle-\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
\end{aligned}
$$

$\mathbf{F}(x, y)=\left(-\frac{1}{\sqrt{x^{2}+y^{2}}}\right)\langle x, y\rangle$, hence it points the opposite direction from $\langle x, y\rangle$

$$
\|\mathbf{F}(x, y)\|=\sqrt{\left(-\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(-\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}}=\sqrt{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}}=\sqrt{1}=1
$$

Hence $\mathbf{F}(x, y)$ has length 1

Kind of looks like gravity/black hole!
Of course we can do all this in 3 dimensions as well:

Example 4:
Sketch $\mathbf{F}(x, y, z)=\langle 0, y, 0\rangle$
Here \mathbf{F} independent of x and z, and proportional to $\langle 0,1,0\rangle$

Point: Everything you learn in 2 dimensions can be generalized to 3 dimensions and beyond!

2. Gradient Fields

Given a function $f(x, y)$, we can create a nice vector field associated to f called the gradient field:

Definition:

If $f(x, y)$ is a function, then

$$
\mathbf{F}=\nabla f=\left\langle f_{x}, f_{y}\right\rangle
$$

is called the gradient field of f.

Example 5:

The gradient field of $f(x, y)=x^{2} y-y^{3}$ is:

$$
\mathbf{F}=\nabla f=\left\langle\left(x^{2} y-y^{3}\right)_{x},\left(x^{2} y-y^{3}\right)_{y}\right\rangle=\left\langle 2 x y, x^{2}-3 y^{2}\right\rangle
$$

Notice that \mathbf{F} is indeed a vector field! It's a nice vector field that you associate to a function f

Big Question:

Are all vector fields \mathbf{F} gradient fields? In other words, can all vector fields \mathbf{F} be written in the form $F=\nabla f$ for some f ?

Answer:

NO.

Non-Example 6:
$\mathbf{F}(x, y)=\langle-y, x\rangle$ (rotation field), then F cannot be written as ∇f for any f (see later why)

This is quite surprising, because even though every function has an antiderivative, not every vector field \mathbf{F} has an antiderivative!

But if \mathbf{F} is a gradient field, we call this nice conservative ${ }^{1}$

Definition:

\mathbf{F} is conservative if $\mathbf{F}=\nabla f$ for some f
Note: f is called a potential function, useful in physics.

[^0]
Example 7:

$\mathbf{F}(x, y)=\left\langle 2 x y, x^{2}-3 y^{2}\right\rangle$ is conservative because $\mathbf{F}=\nabla f$ for $f(x, y)=x^{2} y-y^{3}$

Example 8:

$$
\mathbf{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
$$

Is conservative, because if $f(x, y)=\sqrt{x^{2}+y^{2}}$, then:

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}\right\rangle \\
& =\left\langle\left(\sqrt{x^{2}+y^{2}}\right)_{x},\left(\sqrt{x^{2}+y^{2}}\right)_{y}\right\rangle \\
& =\left\langle\frac{2 x}{2 \sqrt{x^{2}+y^{2}}}, \frac{2 y}{2 \sqrt{x^{2}+y^{2}}}\right\rangle \\
& =\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle \\
& =\mathbf{F} \quad \checkmark
\end{aligned}
$$

Goals of this chapter:

(1) What makes conservative vector fields so nice?
(2) How to determine \mathbf{F} is conservative or not

Note: Check out the following video for a pretty good overview of the topics in this chapter:

Video: Vector Calculus Overview

3. Pretty Pictures

This chapter is incomplete without pretty pictures! Check out this Reddit post for pretty examples of vector fields:

Reddit: Pretty Pictures (start with "A Neat One")

[^0]: ${ }^{1}$ Conservative because of conservation of energy, not because of political preferences ©

