LECTURE 31: VECTOR FIELDS

Welcome to the final chapter of your final calculus course! Like all boss battles, this chapter is unbelievably hard, but also unbelievably exciting!

Today: A very gentle introduction to vector fields, just to show you how awesome they are!

1. VECTOR FIELDS

Definition: A vector field \mathbf{F} is a function that associates to each point (x, y)a vector $\mathbf{F}(x, y)$

Really abstract definition, but a picture says 1000 words:

Example 1:

Sketch $\mathbf{F}(x, y) = \langle x, y \rangle$

 $\mathbf{F}(1,1) = \langle 1,1 \rangle$ $\mathbf{F}(3,1) = \langle 3,1 \rangle$ $\mathbf{F}(2,2) = \langle 2,2 \rangle$ $\mathbf{F}(-3,1) = \langle -3,1 \rangle$

Date: Monday, November 8, 2021.

So a vector field is just a bunch of vectors.

Many applications: Force Field, Velocity Field, Gravitational Field, Electrostatic Field, Emotional Attraction...

Example 2:

Sketch $\mathbf{F}(x,y) = \langle -y,x\rangle$

$$\mathbf{F}(1,0) = \langle -0,1 \rangle = \langle 0,1 \rangle$$
$$\mathbf{F}(0,1) = \langle -1,0 \rangle$$
$$\mathbf{F}(-1,0) = \langle 0,-1 \rangle$$
$$\mathbf{F}(0,-1) = \langle 1,0 \rangle$$

Note: Indeed, we have

$$\mathbf{F}(x,y) \cdot \langle x,y \rangle = \langle -y,x \rangle \cdot \langle x,y \rangle = -yx + xy = 0$$

So $\mathbf{F}(x,y)$ is perpendicular to $\langle x,y\rangle$

Alternate notation:

$$\mathbf{F}(x,y) = \langle -y, x \rangle = -y\mathbf{i} + x\mathbf{j}$$

Where $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$

Example 3:

Sketch the following vector field:

$$\begin{aligned} \mathbf{F}(x,y) &= \left(-\frac{x}{\sqrt{x^2 + y^2}}\right)\mathbf{i} + \left(-\frac{y}{\sqrt{x^2 + y^2}}\right)\mathbf{j} \\ &= \left\langle-\frac{x}{\sqrt{x^2 + y^2}}, -\frac{y}{\sqrt{x^2 + y^2}}\right\rangle\end{aligned}$$

 $\mathbf{F}(x,y) = \left(-\frac{1}{\sqrt{x^2+y^2}}\right) \langle x,y\rangle, \text{ hence it points the opposite direction from } \langle x,y\rangle$

$$\|\mathbf{F}(x,y)\| = \sqrt{\left(-\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + \left(-\frac{y}{\sqrt{x^2 + y^2}}\right)^2} = \sqrt{\frac{x^2 + y^2}{x^2 + y^2}} = \sqrt{1} = 1$$

Hence $\mathbf{F}(x, y)$ has length 1

Kind of looks like gravity/black hole!

Of course we can do all this in 3 dimensions as well:

Example 4:	
Sketch $\mathbf{F}(x, y, z) = \langle 0, y, 0 \rangle$	

Here **F** independent of x and z, and proportional to $\langle 0, 1, 0 \rangle$

Point: Everything you learn in 2 dimensions can be generalized to 3 dimensions and beyond!

2. Gradient Fields

Given a function f(x, y), we can create a nice vector field associated to f called the **gradient field**:

Definition:

If f(x, y) is a function, then

$$\mathbf{F} = \nabla f = \langle f_x, f_y \rangle$$

is called the **gradient field** of f.

Example 5:

The gradient field of $f(x, y) = x^2y - y^3$ is:

$$\mathbf{F} = \nabla f = \left\langle (x^2 y - y^3)_x, (x^2 y - y^3)_y \right\rangle = \left\langle 2xy, x^2 - 3y^2 \right\rangle$$

Notice that **F** is indeed a vector field! It's a *nice* vector field that you associate to a function f

Big Question:

Are all vector fields \mathbf{F} gradient fields? In other words, can all vector fields \mathbf{F} be written in the form $F = \nabla f$ for some f?

Answer:

Non-Example 6:

 $\mathbf{F}(x,y) = \langle -y,x \rangle$ (rotation field), then F cannot be written as ∇f for any f (see later why)

This is quite surprising, because even though every function has an antiderivative, not every vector field \mathbf{F} has an antiderivative!

But if \mathbf{F} is a gradient field, we call this nice conservative¹

Definition:

F is **conservative** if $\mathbf{F} = \nabla f$ for some f

Note: f is called a **potential function**, useful in physics.

¹Conservative because of conservation of energy, not because of political preferences \odot

Example 7:

 ${\bf F}(x,y)=\left< 2xy,x^2-3y^2\right>$ is conservative because ${\bf F}=\nabla f$ for $f(x,y)=x^2y-y^3$

Example 8:

$$\mathbf{F}(x,y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$$

Is conservative, because if $f(x, y) = \sqrt{x^2 + y^2}$, then:

$$\nabla f = \langle f_x, f_y \rangle$$

$$= \left\langle \left(\sqrt{x^2 + y^2} \right)_x, \left(\sqrt{x^2 + y^2} \right)_y \right\rangle$$

$$= \left\langle \frac{2x}{2\sqrt{x^2 + y^2}}, \frac{2y}{2\sqrt{x^2 + y^2}} \right\rangle$$

$$= \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$$

$$= \mathbf{F}$$

Goals of this chapter:

- (1) What makes conservative vector fields so nice?
- (2) How to determine \mathbf{F} is conservative or not

Note: Check out the following video for a pretty good overview of the topics in this chapter:

Video: Vector Calculus Overview

3. Pretty Pictures

This chapter is incomplete without pretty pictures! Check out this Reddit post for pretty examples of vector fields:

Reddit: Pretty Pictures (start with "A Neat One")