LECTURE 34: LINE INTEGRALS (II) + FTC (I)

1. Line Integral of a Vector Field

Video: Line Integral of a Vector Field
Goal: Given a vector field F and a curve C, want to sum up/ integrate the values of F along C

(Think of collecting all the arrows as you walk along C)

Date: Monday, November 15, 2021.

Notation:

$$
\begin{gathered}
r(t)=(x(t), y(t)) \text { (The Curve) } \\
r^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \text { (Tangent Vector) }
\end{gathered}
$$

Definition: (Line Integral of F over C)

$$
\int_{C} F \cdot d r=\int_{a}^{b} F \cdot \frac{d r}{d t} d t=\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t
$$

Example 1:

Calculate $\int_{C} F \cdot d r, F(x, y)=\left\langle x^{2},-x y\right\rangle$
C : Half Circle from $(2,0)$ to $(-2,0)$ with $y \geq 0$, counterclockwise

STEP 1: Picture

STEP 2: Parametrize

$$
\left\{\begin{array}{r}
x(t)=2 \cos (t) \\
y(t)=2 \sin (t) \\
0 \leq t \leq \pi
\end{array}\right.
$$

So $r(t)=(2 \cos (t), 2 \sin (t))$
STEP 3: Integrate

$$
\begin{aligned}
& \int_{C} F \cdot d r \\
= & \int_{0}^{\pi} F \cdot \frac{d r}{d t} d t \\
= & \int_{0}^{\pi} F(r(t)) \cdot r^{\prime}(t) d t \\
= & \int_{0}^{\pi}\left\langle(x(t))^{2},-x(t) y(t)\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t \\
= & \int_{0}^{\pi}\left\langle 4 \cos ^{2}(t),-2 \cos (t) 2 \sin (t)\right\rangle \cdot\langle-2 \sin (t), 2 \cos (t)\rangle d t \\
= & \int_{0}^{\pi}-8 \cos ^{2}(t) \sin (t)-8 \cos (t) \sin (t) \cos (t) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}-16 \cos ^{2}(t) \sin (t) d t \\
& =\left[\frac{16}{3} \cos ^{3}(t)\right]_{0}^{\pi} \\
& =-\frac{16}{3}-\frac{16}{3} \\
& =-\frac{32}{3}
\end{aligned}
$$

Note: If C were in the clockwise direction, then the answer would be $-\left(-\frac{32}{3}\right)=\frac{32}{3}$.

Applications/Intuition:

(1) If $F=$ Force, then $\int_{C} F \cdot d r=$ Work done by F on C
(2) $F \cdot r^{\prime}(t)$ is a number which measures how close F is to C, and $\int_{C} F \cdot d r=\int F \cdot r^{\prime}(t)$ just sums up those numbers

(3) $\mathbf{3}$ Scenarios: In each scenario, think of running on a track C and F is wind blowing either with or against you:

Example 2: (more practice)
Find the work done by the force $F=\langle x \sin (y), y\rangle$ on the particle that moves along the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$

STEP 1: Picture

STEP 2: Parametrization

$$
\left\{\begin{aligned}
x(t) & =t \\
y(t) & =t^{2} \\
(1 & \leq t \leq 2)
\end{aligned}\right.
$$

STEP 3: Integrate

$$
\begin{aligned}
& \int_{C} F \cdot d r \\
= & \int_{1}^{2}\langle x(t) \sin (y(t)), y(t)\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t \\
= & \int_{1}^{2}\left\langle t \sin \left(t^{2}\right), t^{2}\right\rangle \cdot\langle 1,2 t\rangle d t \\
= & \int_{1}^{2} t \sin \left(t^{2}\right)+2 t^{3} d t \\
= & {\left[-\frac{1}{2} \cos \left(t^{2}\right)+\frac{1}{2} t^{4}\right]_{1}^{2} } \\
= & \frac{1}{2}(-\cos (4)+\cos (1))+\frac{1}{2}(16-1) \\
= & \frac{1}{2}(\cos (1)-\cos (4)+15)
\end{aligned}
$$

2. Connecting the two

So far we talked about two different topics: Line Integrals of a function and line integrals of vector fields. It turns out they are both the same!

Example 3:

Consider $\int_{C}-y d x+x d y$

$$
\begin{aligned}
& \int_{C}-y d x+x d y \text { (that shadow thing, from last time) } \\
& \int_{a}^{b}-y(t) x^{\prime}(t)+x(t) y^{\prime}(t) d t \\
= & \int_{a}^{b}\langle-y(t), x(t)\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t \\
= & \int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) F(x, y)=\langle-y, x\rangle \\
= & \int_{C} F \cdot d r \text { (line integral of vector field) }
\end{aligned}
$$

So both topics are just two different sides of the same coin!

Take-A way:

If P and Q are functions, then

$$
\int_{C} P d x+Q d y=\int_{C} F \cdot d r \text { where } F=\langle P, Q\rangle
$$

3. FTC FOR LINE integrals (SECtion 16.3)

We are now ready for the first of four Fundamental Theorems of Calculus (FTC) in this course: The FTC for Line Integrals!

Recall: (FTC)

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)=f(\mathrm{end})-f(\text { start })
$$

Here it's the same thing, except we replace f^{\prime} by ∇f and the integral by a line integral (the proof is in the optional appendix)

FTC for Line Integrals

$$
\int_{C} \nabla f \cdot d r=f(\mathrm{end})-f(\text { start })=f(r(b))-f(r(a))
$$

(This says: Integral of a derivative is $f(b)-f(a)$)

Example 4:

Find $\int_{C} F \cdot d r$, where $F(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle$ and C is any curve from $(1,2)$ to $(3,4)$

Can show: $F=\nabla f$, where $f(x, y)=\frac{1}{2} x^{2} y^{2}$, then:

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(\mathrm{end})-f(\text { start }) \\
& =f(3,4)-f(1,2) \\
& =\frac{1}{2}(3)^{2}(4)^{2}-\frac{1}{2}(1)^{2}(2)^{2} \\
& =70
\end{aligned}
$$

Take-Away

If F is conservative, $F=\nabla f$, then $\int_{C} F \cdot d r$ is easy to evaluate!
(This precisely answers the question from 16.1 as to why conservative vector fields are so nice!)

4. Conservative Vector Fields

Problem: How to determine if F is conservative?
It turns out that there is a really easy test for that!
This trick only works in 2 dimensions! (will find a 3D analog later)
$\underline{2}$ dimensions: Suppose

$$
\begin{gathered}
F=\nabla f \\
\langle P, Q\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
P=f_{x} Q=f_{y}
\end{gathered}
$$

Recall: (Clairaut)

$$
\begin{aligned}
f_{x y} & =f_{y x} \\
\left(f_{x}\right)_{y} & =\left(f_{y}\right)_{x} \\
P_{y} & =Q_{x}
\end{aligned}
$$

Fact:

$$
\text { If } F=\langle P, Q\rangle \text { is conservative, then } P_{y}=Q_{x}
$$

Mnemonic: Peyam = Quixotic

Example 5:

Is $F=\langle-y, x\rangle$ (rotation field) conservative?

$$
\begin{gathered}
P=-y, Q=x \\
P_{y}=-1, Q_{x}=1 \\
P_{y} \neq Q_{x} \\
\text { No }
\end{gathered}
$$

So Conservative $\Rightarrow P_{y}=Q_{x}$.
Question: Does $P_{y}=Q_{x} \Rightarrow F$ conservative? "Yes"
(Yes if the domain of F has no holes, no otherwise)

Important Fact: (if no holes)

$$
F \text { conservative } \Leftrightarrow P_{y}=Q_{x}
$$

Example 6:

Is $F=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$ conservative?

$$
\begin{aligned}
& P_{y}=(3+2 x y)_{y}=2 x \\
& Q_{x}=\left(x^{2}-3 y^{2}\right)_{x}=2 x \\
& P_{y}=Q_{x} \\
& \text { Yes }
\end{aligned}
$$

Intuitively: Conservative means "Doesn't Rotate" and not conservative means "Rotates"

Conservative

Not Conservative

5. Finding antiderivatives

Now suppose F is conservative, how to find an antiderivative of F ?

Example 7:

Let $F=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$, find f such that $F=\nabla f$
STEP 1: Check $P_{y}=Q_{x} \checkmark$ (see previous example)
STEP 2: $F=\nabla f \Rightarrow\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle=\left\langle f_{x}, f_{y}\right\rangle$, hence:

$$
f_{x}(x, y)=3+2 x y \Rightarrow f(x, y)=\int 3+2 x y d x=3 x+x^{2} y+\mathrm{JUNK}
$$

This is saying that f has $3 x$ and $x^{2} y$ in it, with possibly other terms

$$
f_{y}(x, y)=x^{2}-3 y^{2} \Rightarrow f(x, y)=\int x^{2}-3 y^{2} d y=x^{2} y-y^{3}+\mathrm{JUNK}
$$

Now collect all the terms ($x^{2} y$ appears twice, don't double-count it)

STEP 3:

$$
f(x, y)=x^{2} y+3 x-y^{3}
$$

(There might be other possibilities, but just need one antiderivative)

Example 8: (more practice)

Find f such that

$$
F(x, y, z)=\left\langle y^{2}, 2 x y+e^{3 z}, 3 y e^{3 z}\right\rangle=\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

STEP 1: Check F conservative. See $16.5 \checkmark$

STEP 2:

$$
f_{x}(x, y, z)=y^{2} \Rightarrow f(x, y, z)=\int y^{2} d x=x y^{2}+\mathrm{JUNK}
$$

$f_{y}(x, y, z)=2 x y+e^{3 z} \Rightarrow f(x, y, z)=\int 2 x y+e^{3 z} d y=x y^{2}+y e^{3 z}+\mathrm{JUNK}$
$f_{z}(x, y, z)=3 y e^{3 z} \Rightarrow f(x, y, z)=\int 3 y e^{3 z} d z=3 y\left(\frac{e^{3 z}}{3}\right)=y e^{3 z}+$ JUNK
STEP 3: Hence $f(x, y, z)=x y^{2}+y e^{3 z}$

6. Appendix: Proof of FTC

$$
\text { Consider: } \int_{a}^{b} \frac{d}{d t} f(r(t)) d t
$$

On the one hand, this equals

$$
\int_{a}^{b} \frac{d}{d t} f(r(t)) d t=f(r(b))-f(r(a))
$$

On the other hand, by the Chen Lu (Chain Rule):

$$
\begin{aligned}
\frac{d}{d t} f(r(t)) & =\frac{d}{d t} f(x(t), y(t)) \\
& =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\
& =\left(f_{x}\right)\left(x^{\prime}(t)\right)+\left(f_{y}\right)\left(y^{\prime}(t)\right) \\
& =\left\langle f_{x}, f_{y}\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \\
& =\nabla f(x(t), y(t)) \cdot r^{\prime}(t) \\
& =\nabla f(r(t)) \cdot r^{\prime}(t)
\end{aligned}
$$

$$
\text { Hence: } \int_{a}^{b} \frac{d}{d t} f(r(t)) d t=\int_{a}^{b} \nabla f(r(t)) \cdot r^{\prime}(t)=\int_{C} \nabla f \cdot d r
$$

Combining the two, we get:

$$
\int_{C} \nabla f \cdot d r=\int_{a}^{b} \frac{d}{d t} f(r(t)) d t=f(r(b))-f(r(a))
$$

