
LECTURE 34: LINE INTEGRALS (II) + FTC (I)

1. Line Integral of a Vector Field

Video: Line Integral of a Vector Field

Goal: Given a vector field F and a curve C, want to sum up/ integrate
the values of F along C

(Think of collecting all the arrows as you walk along C)

Date: Monday, November 15, 2021.
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https://www.youtube.com/watch?v=G_anjEn6iX4
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Notation:

r(t) = (x(t), y(t)) (The Curve)

r′(t) = ⟨x′(t), y′(t)⟩ (Tangent Vector)

Definition: (Line Integral of F over C)∫
C

F · dr =
∫ b

a

F · dr
dt

dt =

∫ b

a

F (r(t)) · r′(t)dt

Example 1:

Calculate
∫
C F · dr, F (x, y) =

〈
x2,−xy

〉
C : Half Circle from (2, 0) to (−2, 0) with y ≥ 0, counterclockwise

STEP 1: Picture
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STEP 2: Parametrize 
x(t) =2 cos(t)

y(t) =2 sin(t)

0 ≤ t ≤ π

So r(t) = (2 cos(t), 2 sin(t))

STEP 3: Integrate

∫
C

F · dr

=

∫ π

0

F · dr
dt

dt

=

∫ π

0

F (r(t)) · r′(t)dt

=

∫ π

0

〈
(x(t))2,−x(t)y(t)

〉
· ⟨x′(t), y′(t)⟩ dt

=

∫ π

0

〈
4 cos2(t),−2 cos(t)2 sin(t)

〉
· ⟨−2 sin(t), 2 cos(t)⟩ dt

=

∫ π

0

−8 cos2(t) sin(t)− 8 cos(t) sin(t) cos(t)dt



4 LECTURE 34: LINE INTEGRALS (II) + FTC (I)

=

∫ π

0

−16 cos2(t) sin(t)dt

=

[
16

3
cos3(t)

]π
0

=− 16

3
− 16

3

=− 32

3

Note: If C were in the clockwise direction, then the answer would be
−
(
−32

3

)
= 32

3 .

Applications/Intuition:

(1) If F = Force, then
∫
C F · dr = Work done by F on C

(2) F · r′(t) is a number which measures how close F is to C, and∫
C F · dr =

∫
F · r′(t) just sums up those numbers

(3) 3 Scenarios: In each scenario, think of running on a track C
and F is wind blowing either with or against you:
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Example 2: (more practice)

Find the work done by the force F = ⟨x sin(y), y⟩ on the particle
that moves along the parabola y = x2 from (1, 1) to (2, 4)

STEP 1: Picture
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STEP 2: Parametrization
x(t) =t

y(t) =t2

(1 ≤t ≤ 2)

STEP 3: Integrate∫
C

F · dr

=

∫ 2

1

⟨x(t) sin(y(t)), y(t)⟩ · ⟨x′(t), y′(t)⟩ dt

=

∫ 2

1

〈
t sin

(
t2
)
, t2

〉
· ⟨1, 2t⟩ dt

=

∫ 2

1

t sin
(
t2
)
+ 2t3dt

=

[
−1

2
cos

(
t2
)
+

1

2
t4
]2
1

=
1

2
(− cos(4) + cos(1)) +

1

2
(16− 1)

=
1

2
(cos(1)− cos(4) + 15)

2. Connecting the two

So far we talked about two different topics: Line Integrals of a function
and line integrals of vector fields. It turns out they are both the same!

Example 3:

Consider
∫
C −ydx+ xdy
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∫
C

−ydx+ xdy (that shadow thing, from last time)∫ b

a

−y(t)x′(t) + x(t)y′(t)dt

=

∫ b

a

⟨−y(t), x(t)⟩ · ⟨x′(t), y′(t)⟩ dt

=

∫ b

a

F (r(t)) · r′(t) F (x, y) = ⟨−y, x⟩

=

∫
C

F · dr (line integral of vector field)

So both topics are just two different sides of the same coin!

Take-Away:

If P and Q are functions, then∫
C

Pdx+Qdy =

∫
C

F · dr where F = ⟨P,Q⟩

3. FTC for line integrals (section 16.3)

We are now ready for the first of four Fundamental Theorems of Cal-
culus (FTC) in this course: The FTC for Line Integrals!

Recall: (FTC)∫ b

a

f ′(x)dx = f(b)− f(a) = f(end) − f(start)
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Here it’s the same thing, except we replace f ′ by ∇f and the integral
by a line integral (the proof is in the optional appendix)

FTC for Line Integrals∫
C

∇f · dr = f(end) − f(start) = f(r(b))− f(r(a))

(This says: Integral of a derivative is f(b)− f(a))

Example 4:

Find
∫
C F · dr, where F (x, y) =

〈
xy2, x2y

〉
and C is any curve

from (1, 2) to (3, 4)
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Can show: F = ∇f , where f(x, y) = 1
2x

2y2, then:∫
C

F · dr =
∫
C

∇f · dr

= f(end) − f(start)

=f(3, 4)− f(1, 2)

=
1

2
(3)2(4)2 − 1

2
(1)2(2)2

=70

Take-Away

If F is conservative, F = ∇f , then
∫
C F · dr is easy to evaluate!

(This precisely answers the question from 16.1 as to why conservative
vector fields are so nice!)

4. Conservative Vector Fields

Problem: How to determine if F is conservative?

It turns out that there is a really easy test for that!

!△ This trick only works in 2 dimensions! (will find a 3D analog later)

2 dimensions: Suppose

F =∇f

⟨P,Q⟩ = ⟨fx, fy⟩
P = fx Q = fy

Recall: (Clairaut)
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fxy =fyx

(fx)y =(fy)x
Py =Qx

Fact:

If F = ⟨P,Q⟩ is conservative, then Py = Qx

Mnemonic: Peyam = Quixotic

Example 5:

Is F = ⟨−y, x⟩ (rotation field) conservative?

P = −y, Q = x

Py = −1, Qx = 1

Py ̸=Qx

No

So Conservative ⇒ Py = Qx.

Question: Does Py = Qx ⇒ F conservative? “Yes”

(Yes if the domain of F has no holes, no otherwise)
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Important Fact: (if no holes)

F conservative ⇔ Py = Qx

Example 6:

Is F =
〈
3 + 2xy, x2 − 3y2

〉
conservative?

Py =(3 + 2xy)y = 2x

Qx =(x2 − 3y2)x = 2x

Py =Qx

Yes

Intuitively: Conservative means “Doesn’t Rotate” and not conserva-
tive means “Rotates”
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5. Finding antiderivatives

Now suppose F is conservative, how to find an antiderivative of F?

Example 7:

Let F =
〈
3 + 2xy, x2 − 3y2

〉
, find f such that F = ∇f

STEP 1: Check Py = Qx (see previous example)

STEP 2: F = ∇f ⇒
〈
3 + 2xy, x2 − 3y2

〉
= ⟨fx, fy⟩, hence:

fx(x, y) = 3 + 2xy ⇒ f(x, y) =

∫
3 + 2xy dx = 3x+ x2y + JUNK

This is saying that f has 3x and x2y in it, with possibly other terms

fy(x, y) = x2 − 3y2 ⇒ f(x, y) =

∫
x2 − 3y2dy = x2y − y3 + JUNK
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Now collect all the terms (x2y appears twice, don’t double-count it)

STEP 3:

f(x, y) = x2y + 3x− y3

(There might be other possibilities, but just need one antiderivative)

Example 8: (more practice)

Find f such that

F (x, y, z) =
〈
y2, 2xy + e3z, 3ye3z

〉
= ∇f = ⟨fx, fy, fz⟩

STEP 1: Check F conservative. See 16.5

STEP 2:

fx(x, y, z) = y2 ⇒ f(x, y, z) =

∫
y2dx = xy2 + JUNK

fy(x, y, z) = 2xy+e3z ⇒ f(x, y, z) =

∫
2xy+e3zdy = xy2+ye3z+ JUNK

fz(x, y, z) = 3ye3z ⇒ f(x, y, z) =

∫
3ye3zdz = 3y

(
e3z

3

)
= ye3z+ JUNK

STEP 3: Hence f(x, y, z) = xy2 + ye3z
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6. Appendix: Proof of FTC

Consider:

∫ b

a

d

dt
f(r(t))dt

On the one hand, this equals∫ b

a

d

dt
f(r(t))dt = f(r(b))− f(r(a))

On the other hand, by the Chen Lu (Chain Rule):

d

dt
f(r(t)) =

d

dt
f(x(t), y(t))

=
∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

=(fx) (x
′(t)) + (fy) (y

′(t))

= ⟨fx, fy⟩ · ⟨x′(t), y′(t)⟩
=∇f(x(t), y(t)) · r′(t)
=∇f(r(t)) · r′(t)

Hence:

∫ b

a

d

dt
f(r(t))dt =

∫ b

a

∇f(r(t)) · r′(t) =
∫
C

∇f · dr

Combining the two, we get:∫
C

∇f · dr =
∫ b

a

d

dt
f(r(t))dt = f(r(b))− f(r(a))
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