LECTURE 35: FTC FOR LINE INTEGRALS (II)

1. Putting it together

Video: FTC for Line Integrals

Example 1:

Calculate $\int_{C} F \cdot d r$ where $F(x, y)=\left\langle x^{2} y^{3}, x^{3} y^{2}\right\rangle$ and C is the curve

$$
\left\{\begin{array}{c}
x(t)=\cos (t) \\
y(t)=2 \sin (t) \\
0 \leq t \leq \frac{\pi}{2}
\end{array}\right.
$$

STEP 1: Picture:

Date: Wednesday, November 17, 2021.

Could calculate the integral directly, but it becomes way harder (sometimes even impossible) to integrate

STEP 2: Check:

$$
\begin{aligned}
P_{y} & =\left(x^{2} y^{3}\right)_{y}=3 x^{2} y^{2} \\
Q_{x} & =\left(x^{3} y^{2}\right)_{x}=3 x^{2} y^{2}
\end{aligned}
$$

STEP 3: Find f

$$
\begin{gathered}
F=\nabla f \Rightarrow\left\langle x^{2} y^{3}, x^{3} y^{2}\right\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
f_{x}(x, y)=x^{2} y^{3} \Rightarrow f(x, y)=\int x^{2} y^{3} d x=\frac{1}{3} x^{3} y^{3}+\mathrm{JUNK} \\
f_{y}(x, y)=x^{3} y^{2} \Rightarrow f(x, y)=\int x^{3} y^{2} d y=\frac{1}{3} x^{3} y^{3}+\mathrm{JUNK} \\
f(x, y)=\frac{1}{3} x^{3} y^{3}
\end{gathered}
$$

STEP 4: Integrate

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(\mathrm{end})-f(\text { start }) \\
& =f(0,2)-f(1,0) \\
& =\frac{1}{3}(0)^{3}(2)^{3}-\frac{1}{3}(1)^{3}(0)^{3} \\
& =0
\end{aligned}
$$

Example 2:

Calculate $\int_{C} F \cdot d r$ where $F(x, y)=\langle\sin (y), x \cos (y)-\sin (y)\rangle$ and C is the line from $(2,0)$ to $(1, \pi)$

STEP 1: Picture:

STEP 2: Conservative:

$$
\begin{aligned}
P_{y} & =(\sin (y))_{y}=\cos (y) \\
Q_{x} & =(x \cos (y)-\sin (y))_{x}=\cos (y) \\
P_{y} & =Q_{x}
\end{aligned}
$$

STEP 3: Antiderivative:

$$
\begin{aligned}
& F=\nabla f \Rightarrow\langle\sin (y), x \cos (y)-\sin (y)\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
& f_{x}=\sin (y) \Rightarrow f(x, y)=\int \sin (y) d x=x \sin (y)+\mathrm{JUNK} \\
& f_{y}= x \cos (y)-\sin (y) \\
& \Rightarrow f(x, y)=\int x \cos (y)-\sin (y) d y=x \sin (y)+\cos (y)+\mathrm{JUNK}
\end{aligned}
$$

$$
f(x, y)=x \sin (y)+\cos (y)
$$

STEP 4:

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(1, \pi)-f(2,0) \\
& =1 \sin (\pi)+\cos (\pi)-2 \sin (0)-\cos (0) \\
& =-1-1 \\
& =-2
\end{aligned}
$$

Note: There are more examples at the end (if you need more practice)

2. Path (in)-Dependence

Video: Path Independence
Recall: In general, $\int_{C} F \cdot d r$ depends on the path C

$\int_{C} F \cdot d r \neq \int_{C^{\prime}} F \cdot d r$, even if C and C^{\prime} have the same start/endpoints.

Question:

When is $\int_{C} F \cdot d r$ independent of the path?
For this, we'll need a quick definition:

Definition:

C is closed if Start $=$ End

Closed

Not Closed

Start

The following is an easy test for path independence:

$$
\begin{aligned}
& \text { Neat Fact: } \\
& \int_{C} F \cdot d r \text { is independent of path } \Leftrightarrow \int_{C} F \cdot d r=0 \text { for every } \underline{\text { closed }} C
\end{aligned}
$$

In other words, to check for independence, just don't need to check this for all paths, just for closed ones.
(For a proof of the neat fact, check out the Appendix at the end)

From this, we get an even easier and more important fact:

Important Fact:

$\int_{C} F \cdot d r$ is independent of path $\Leftrightarrow F$ is conservative $(F=\nabla f)$
Which explains YET AGAIN why conservative vector fields are important!

Proof:

(\Rightarrow) Skip (but it explicitly constructs f)
(\Leftarrow) Let's use the neat fact! Suppose $F=\nabla f$ and assume C is closed, then:

$$
\int_{C} F \cdot d r=\int_{C} \nabla f \cdot d r=f(\mathrm{end})-f(\text { start })=0(\text { since } C \text { is closed })
$$

Since $\int_{C} F \cdot d r=0$ for all closed C, we're done by the Neat Fact
Remark: If C is closed, $\int_{C} F \cdot d r$ is sometimes called the circulation of F around C and measures how many times F loops around C. For
conservative F, we have $\int_{C} F \cdot d r=0$, so conservative F are irrotational ($=$ don't rotate)

Summary:

Conservative vector fields $F=\nabla f$ are nice because:
(1) $\int_{C} F \cdot d r$ is easy to calculate (by FTC)
(2) $\int_{C} F \cdot d r$ is independent of path
(3) F is irrotational

3. More Examples and Pitfalls

Video: FTC 3 Dimensions

Example 3:

Calculate $\int_{C} F \cdot d r$, where $F(x, y, z)=\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle$ and C is the curve:

$$
\left\{\begin{array}{c}
x(t)=t \\
y(t)=t^{2} \\
z(t)=t^{3} \\
1 \leq t \leq 2
\end{array}\right.
$$

STEP 1: Picture:

STEP 2: Conservative: See Section 16.5

STEP 3: Antiderivative:

$$
F=\nabla f \Rightarrow\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

$f_{x}=y z e^{x z} \Rightarrow f(x, y, z)=\int y z e^{x z} d x=y z\left(\frac{e^{x z}}{z}\right)+\mathrm{JUNK}=y e^{x z}+\mathrm{JUNK}$
$f_{y}=e^{x z} \Rightarrow f(x, y, z)=\int e^{x z} d y=y e^{x z}+J U N K$
$f_{z}=x y e^{x z} \Rightarrow f(x, y, z)=\int x y e^{x z} d z=x y\left(\frac{e^{x z}}{x}\right)+\mathrm{JUNK}=y e^{x z}+\mathrm{JUNK}$

$$
f(x, y, z)=y e^{x z}
$$

STEP 4: Integrate

$$
\begin{aligned}
& \int_{C} F \cdot d r \\
= & \int_{C} \nabla f \cdot d r \\
= & f(2,4,8)-f(1,1,1) \\
= & 4 e^{(2)(8)}-1 e^{(1)(1)} \\
= & 4 e^{16}-e
\end{aligned}
$$

Video: FTC Pitfalls

Example 4:

$\int_{C} F \cdot d r, F(x, y)=\langle 2 y, 3 x\rangle, C$: Circle centered at $(0,0)$ of radius 2 (counterclockwise)

STEP 1: Picture:

STEP 2: Conservative:

$$
\left\{\begin{array}{l}
P_{y}=2 \\
Q_{x}=3
\end{array} \quad \Rightarrow P_{y} \neq Q_{x} \Rightarrow \mathrm{NO}\right.
$$

RUH-OH!!! Well, in that case you have to get your hands dirty and calculate the integral directly.

STEP 3: Parametrize:

$$
\left\{\begin{aligned}
& x(t)=2 \cos (t) \\
& y(t)=2 \sin (t) \\
& 0 \leq t \leq 2 \pi
\end{aligned}\right.
$$

STEP 4: Integrate:

$$
\begin{aligned}
& \int_{C} F \cdot d r \\
= & \int_{0}^{2 \pi} F(r(t)) \cdot r^{\prime}(t) d t \\
= & \int_{0}^{2 \pi}\langle 2(2 \sin (t)), 3(2 \cos (t))\rangle \cdot\langle-2 \sin (t), 2 \cos (t)\rangle d t \\
= & \int_{0}^{2 \pi}-8 \sin ^{2}(t)+12 \cos ^{2}(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}-8 \sin ^{2}(t)+12\left(1-\sin ^{2}(t)\right) d t \\
& =\int_{0}^{2 \pi}-8 \sin ^{2}(t)+12-12 \sin ^{2}(t) d t \\
& =\int_{0}^{2 \pi} 12-20 \sin ^{2}(t) d t \\
& =12(2 \pi)-20 \int_{0}^{2 \pi} \frac{1}{2}-\frac{1}{2} \cos (2 t) d t \\
& =24 \pi-20\left[\frac{t}{2}-\frac{1}{4} \cos (2 t)\right]_{0}^{2 \pi} \\
& =24 \pi-20\left(\pi-0-\frac{1}{4} \cos (2 \pi)+\frac{1}{4} \cos (0)\right) \\
& =24 \pi-20 \pi \\
& =4 \pi
\end{aligned}
$$

Notice: Even though C is closed, we have $\int_{C} F \cdot d r \neq 0$, yet another argument why F is not conservative.

Example 5: (extra practice)

Same, but $F(x, y)=\left\langle 2 x y, x^{2}\right\rangle$

STEP 2: Conservative:

$$
\begin{aligned}
P_{y} & =2 x \\
Q_{x} & =2 x \\
P_{y} & =Q_{x}
\end{aligned}
$$

But since C is closed, we automatically get $\int_{C} F \cdot d r=0$.

4. Appendix: Proof of Neat Fact

$$
\begin{aligned}
& \text { Neat Fact: } \\
& \int_{C} F \cdot d r \text { is independent of path } \Leftrightarrow \int_{C} F \cdot d r=0 \text { for every closed } C
\end{aligned}
$$

(\Rightarrow) Suppose the integral is independent of path and let C be any closed curve. Pick any point $\left(x_{0}, y_{0}\right)$ on C and let C^{\prime} be the path parametrized by $r(t)=\left(x_{0}, y_{0}\right)$ (so C^{\prime} literally does nothing)

Then $\int_{C^{\prime}} F \cdot d r=0$, since $r(t)=\left(x_{0}, y_{0}\right)$ and $r^{\prime}(t)=\langle 0,0\rangle$. But since the integral is independent of path, we get

$$
\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r=0
$$

(\Leftarrow) Suppose C and C^{\prime} are two curves with the same start and endpoints, we want to show $\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r$

Let $C^{\prime \prime}$ be C followed by C^{\prime} (but in the opposite direction). So $C^{\prime \prime}$ is the loop formed by C and C^{\prime}

Then, since $C^{\prime \prime}$ is closed, by assumption we get:

$$
\begin{gathered}
\int_{C^{\prime \prime}} F \cdot d r=0 \\
\int_{C} F \cdot d r+\int_{-C^{\prime}} F \cdot d r=0-C^{\prime} \text { is } C^{\prime} \text { but in the other direction } \\
\int_{C} F \cdot d r-\int_{C^{\prime}} F \cdot d r=0 \\
\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r
\end{gathered}
$$

