LECTURE 37: CURL AND DIVERGENCE

Today: Two new cool operations that you can do with vector fields: Curl and Divergence!

1. Divergence

Divergence

If $F=\langle P, Q, R\rangle$, then $\operatorname{div}(F)=P_{x}+Q_{y}+R_{z}$

Example 1:

If $F=\left\langle x^{2}, y^{2}, z^{2}\right\rangle$ then

$$
\operatorname{div}(F)=\left(x^{2}\right)_{x}+\left(y^{2}\right)_{y}+\left(z^{2}\right)_{z}=\underbrace{2 x+2 y+2 z}_{\text {A Number }}
$$

Example 2:

If $F=\left\langle\tan ^{-1}(x z), e^{y z}, \ln (1+x z)\right\rangle$, then

$$
\begin{aligned}
\operatorname{div}(F) & =\left(\tan ^{-1}(x z)\right)_{x}+\left(e^{y z}\right)_{y}+(\ln (1+x z))_{z} \\
& =\left(\frac{1}{(x z)^{2}+1}\right) z+e^{y z}(z)+\left(\frac{1}{1+x z}\right) x
\end{aligned}
$$

Interpretation: $\operatorname{div}(F)$ measures the expansion of F

Date: Monday, November 22, 2021.

Example: $\operatorname{div}(\langle x, y, z\rangle)=1+1+1=3$

F "expands" at a rate of 3
In fact: If $\operatorname{div}(F)=0$, then F is incompressible (= non-expanding)

2. Motivation for Curl

Goal

What is the analog of $Q_{x}-P_{y}$ in 3 dimensions?

Suppose $F=\langle P, Q, R\rangle$ is conservative, that is $F=\nabla f$

$$
\langle P, Q, R\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

So by Clairaut:

$$
\begin{aligned}
& f_{x y}=f_{y x} \Rightarrow\left(f_{x}\right)_{y}=\left(f_{y}\right)_{x} \Rightarrow P_{y}=Q_{x} \Rightarrow Q_{x}-P_{y}=0 \\
& f_{y z}=f_{z y} \Rightarrow\left(f_{y}\right)_{z}=\left(f_{z}\right)_{y} \Rightarrow Q_{z}=R_{y} \Rightarrow R_{y}-Q_{z}=0 \\
& f_{x z}=f_{z x} \Rightarrow\left(f_{x}\right)_{z}=\left(f_{z}\right)_{x} \Rightarrow P_{z}=R_{x} \Rightarrow P_{z}-R_{x}=0
\end{aligned}
$$

The amazing thing is that there is one operation called the curl that takes care of all three cases at once.

3. Curl

Definition

$$
\operatorname{curl}(F)=\nabla \times F=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle
$$

Example 3:

Find $\operatorname{curl}(F)$, where $F=\langle 0,-z, y\rangle$

$$
\begin{aligned}
\operatorname{curl}(F) & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & -z & y
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y}(y)-\frac{\partial}{\partial z}(-z),-\frac{\partial}{\partial x}(y)+\frac{\partial}{\partial z}(0), \frac{\partial}{\partial x}(-z)-\frac{\partial}{\partial y}(0)\right\rangle \\
& =\langle 1+1,0,0\rangle \\
& =\langle 2,0,0\rangle
\end{aligned}
$$

Remark: $\operatorname{curl}(F)$ is a vector, not a number! (as opposed to $\operatorname{div}(F)$, which is a number)

Example 4:
Find curl F, where $F=\langle x z, y z, x y\rangle$

$$
\begin{aligned}
\operatorname{curl}(F) & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x z & y z & x y
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y}(x y)-\frac{\partial}{\partial z}(y z),-\frac{\partial}{\partial x}(x y)+\frac{\partial}{\partial z}(x z), \frac{\partial}{\partial x}(y z)-\frac{\partial}{\partial y}(x z)\right\rangle \\
& =\langle x-y,-y+x, 0\rangle
\end{aligned}
$$

4. Interpretation

Intuitively: $\operatorname{curl}(F)$ measures the rotation of F.
Recall: In $2 D, Q_{x}-P_{y}$ measures the microscopic rotation of F

Here we have a 3 dimensional version of this phenomenon:

$$
\operatorname{curl}(F)=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle
$$

So curl (F) measures how F rotates, but in each plane.

Example 5:

$F=\langle 0,-z, y\rangle$, showed $\operatorname{curl}(F)=\langle 2,0,0\rangle$

Here $\operatorname{curl}(F)$ is the axis of rotation of F

5. Conservative Vector Fields

The most important thing about curl is that it gives us a very elegant way of checking whether a vector field is conservative or not.

Fact:

If F is conservative, then $\operatorname{curl}(F)=\langle 0,0,0\rangle$
Why? We showed that if $F=\langle P, Q, R\rangle$ is conservative, then

$$
\left\{\begin{array}{l}
Q_{x}-P_{y}=0 \\
R_{y}-Q_{z}=0 \\
P_{z}-R_{x}=0
\end{array}\right.
$$

Therefore: $\operatorname{curl}(F)=\langle\underbrace{R_{y}-Q_{z}}_{0}, \underbrace{P_{z}-R_{x}}_{0}, \underbrace{Q_{x}-P_{y}}_{0}\rangle=\langle 0,0,0\rangle$
Conversely: If $\operatorname{curl}(F)=\langle 0,0,0\rangle$ (and no holes), then F is conservative (this uses Stokes' theorem, see section 16.8)

Important Fact:

$$
F \text { conservative } \Leftrightarrow \operatorname{curl}(F)=\langle 0,0,0\rangle
$$

So this is a good test for conservative in 3 dimensions, 3D analog of $P_{y}=Q_{x}$

Interpretation: Conservative vector fields are irrotational (curl is zero), just like in 2 dimensions.

Example 6: (Good exam question)

(a) Is $F=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative?

$$
\begin{aligned}
\operatorname{curl}(F)= & \left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
= & \left\langle\frac{\partial}{\partial y}\left(3 x y^{2} z^{2}\right)-\frac{\partial}{\partial z}\left(2 x y z^{3}\right),-\frac{\partial}{\partial x}\left(3 x y^{2} z^{2}\right)+\frac{\partial}{\partial z}\left(y^{2} z^{3}\right),\right. \\
& \left.\frac{\partial}{\partial x}\left(2 x y z^{3}\right)-\frac{\partial}{\partial y}\left(y^{2} z^{3}\right)\right\rangle \\
= & \left\langle 6 x y z^{2}-6 x y z^{2},=3 y^{2} z^{2}+3 y^{2} z^{2}, 2 y z^{3}-2 y z^{3}\right\rangle \\
= & \langle 0,0,0\rangle \quad \text { BINGO! }
\end{aligned}
$$

Answer: Yes
(b) Find f such that $F=\nabla f$

$$
\begin{gathered}
\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
f_{x}=y^{2} z^{3} \Rightarrow f=\int y^{2} z^{3} d x=x y^{2} z^{3}+\text { JUNK } \\
f_{y}=2 x y z^{3} \Rightarrow f=\int 2 x y z^{3} d y=x y^{2} z^{3}+\text { JUNK } \\
f_{z}=3 x y^{2} z^{2} \Rightarrow f=\int 3 x y^{2} z^{2} d z=x y^{2} z^{3}+\text { JUNK }
\end{gathered}
$$

$$
f(x, y, z)=x y^{2} z^{3}
$$

(c) Evaluate $\int_{C} F \cdot d r, C$ any path connecting $(0,0,0)$ and $(1,1,1)$

$$
\begin{aligned}
\int_{C} F \cdot d r & =f(1,1,1)-f(0,0,0) \\
& =(1)\left(1^{2}\right)\left(1^{3}\right)-(0)\left(0^{2}\right)\left(0^{3}\right) \\
& =1
\end{aligned}
$$

6. Div, Grad, Curl

Question: How are $\operatorname{div}(F), \operatorname{curl}(F)$, and ∇f related?

Important Facts:

(1) $\operatorname{curl}(\nabla f)=\langle 0,0,0\rangle$
(2) $\operatorname{div}(\operatorname{curl}(F))=0$

Why?

(1) Direct calculation, or: ∇f is conservative, so $\operatorname{curl}(\nabla f)=\langle 0,0,0\rangle$ (by fact above)
(2) Direct calculation

Mnemonic: If you follow the book's order, then
New Topic (Topic before that) $=0$

$$
\begin{aligned}
& \underbrace{\operatorname{curl}}_{16.5} \underbrace{\nabla f}_{14.6}=\langle 0,0,0\rangle \\
& \underbrace{\text { div }}_{6.5 \text { Part } 2} \underbrace{\operatorname{curl} F}_{16.5 \text { Part } 1}=0
\end{aligned}
$$

Example 7:

Can $F=\left\langle x z, x y z,-y^{2}\right\rangle$ be written as $\operatorname{curl} G$ for some G ?
No! Suppose $F=\operatorname{curl} G$, then

$$
\begin{aligned}
\operatorname{div}(F) & =\operatorname{div}(\operatorname{curl} G)=0 \quad \text { (By Fact) } \\
\text { But: } \quad \operatorname{div}(F) & =(x z)_{x}+(x y z)_{y}+\left(-y^{2}\right)_{z}=z+x z \neq 0
\end{aligned}
$$

So $0 \neq 0$, which is a (juicy) contradiction

Warning:

$$
\operatorname{div}(\nabla f) \neq 0
$$

$$
\begin{aligned}
\operatorname{div}(\nabla f) & =\operatorname{div}\left(\left\langle f_{x}, f_{y}, f_{z}\right\rangle\right) \\
& =\left(f_{x}\right)_{x}+\left(f_{y}\right)_{y}+\left(f_{z}\right)_{z} \\
& =f_{x x}+f_{y y}+f_{z z} \\
& =\Delta f(\text { Laplacian of } f, \text { from 14.3) }
\end{aligned}
$$

