
LECTURE 4: COMPLETENESS (II) AND LIMITS (I)

Today: Two very nice applications of sup, starting with the Archimedean
Property:

1. Archimedean Property

Video: Archimedean Property

Analogy: Suppose you go to the grocery store and the cashier says
“Your total is $100” Can you pay this using (infinitely many) $1 bills?
What if the total is $1000 and you only have 1 cent coins? Still yes!
This is the essence of:

Archimedean Property

If a and b are positive are real numbers, then for some n ∈ N we
have na > b

Interpretation: No matter how large the total b is and how small
your currency a is, it is always possible to exceed b by using enough a

Date: Thursday, September 9, 2021.
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https://youtu.be/DssLr2xHWNg
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Or, to quote the book, “Given enough time, one can empty a large
bathtub with a small spoon.”

Proof: Assume a < b (the other cases are boring1)

Suppose this is false, that is there are a > 0 and b > 0 such that na ≤ b
for all n ∈ N:

This means that if you let S = {na | n ∈ N · · · }, then S is bounded
above by b, so by the Least Upper Bound Property, M =: sup(S)
exists.

Consider M-a < M , then by the definition of sup(S), there is s1 ∈ S
such that s1 > M − a

Since s1 ∈ S, s1 = n0a for some n0 ∈ N. Therefore:

s1 > M − a ⇒ n0a > M − a ⇒ n0a+ a > M ⇒ (n0 + 1)a > M

1If a > b, n = 1 works, and if a = b, n = 2 works
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This is a contradiction because, since (n0+1)a ∈ S (by definition) and
M is an upper bound, we must have

M < (n0 + 1)a ≤ M ⇒⇐ □

2. Dense with me!

Video: Q is dense in R

Finally, using the Archimedean property, we can show the following
important fact about Q, It says that between two rational numbers
there always is a real number:

Theorem (Q is dense in R)

For any real numbers a and b with a < b there is a rational number
r such that a < r < b

https://youtu.be/A9L6YVtoAsQ
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Note: The point is that even if a and b are really close together, you
can always squeeze a rational number between them. Intuitively this
is saying that, even though Q has holes, it still fills up “most” of R,
unlike Z for instance, which is pretty sparse.

Proof: Suppose a < b, WTF r = m
n such that a < m

n < b.

STEP 1: Since b − a > 0, by the Archimedean property applied to
b − a (your currency) and 1 (your total), there is n ∈ N such that
n(b− a) > 1, that is b− a > 1

n
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Note: For the remainder of the proof, remember that n is fixed (if
you want, think n = 3). Think of 1

n as a scale, like 1 mm or 1 nm.

STEP 2: WLOG, assume2 a > 0

Main Idea: List all the fractions 0, 1n ,
2
n ,

3
n , · · · until you reach the last

one that is < b. This process has to stop because b is finite, and also
that last fraction is guaranteed to be between a and b because a and b
are at least 1

n apart.

Here are the details: Consider the following set:

S =
{m

n
| m = 0, 1, 2, · · · and

m

n
< b

}
Then S is nonempty (0 ∈ S) and S is bounded above by b, so by the
Least Upper Bound Property, sup(S) = r exists.

Claim: This r solves our problem

2For the other cases: If a < b < 0, then notice −a > −b > 0 and use this proof to find r rational
with −b < r < −a and then −r does the trick. And if a = 0 then r = 1

n works since b− a > 1
n and

if b = 0 then r = − 1
n works. And if a < 0 < b, then let r = 0
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Why? Need to show that r is rational, and a < r < b.

First of all, S only has finitely many elements: By the Archimedean
property with 1

n (currency) and b (total), there is k ∈ N such that

k
(
1
n

)
= k

n > b, so S has at most k elements.

Since S is finite, sup(S) = max(S) (Think for example S = {1, 3, 5, 9}.
You can compare all the elements of S one by one and pick the one that
is is largest3). In particular, r =: sup(S) = max(S) ∈ S (by definition
of max), so by definition of S, r is rational and r < b.

Finally, to show r > a, suppose r = m
n ≤ a, but then

b− a >
1

n
⇒ b > a+

1

n
≥ m

n
+

1

n
=

m+ 1

n

Hence m+1
n < b and so m+1

n is an element of S that is bigger than
r = m

n , which contradicts the fact that r = sup(S) ⇒⇐ □

3. Interlude: What is ∞?

Video: What is Infinity?

As an interlude, let’s digress and talk about infinity. The nice thing
is that we can extend the definition of sup(S) and inf(S) in the case
where S is unbounded:

3To make this rigorous, you can use induction on the size of S. Namely Pn would be the
proposition “If S has n elements, then S has a max”

https://youtu.be/66OJeEmuiL0
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Definition:

We say sup(S) = ∞ if S is not bounded above, that is: for all M
there is s1 ∈ S such that s1 > M .

Similarly, inf(S) = −∞ if S is not bounded below, that is: for all
m there is s1 ∈ S such that s1 < m.

With this new definition, we get that sup(S) and inf(S) always exist
(but could be ±∞)

Example:

Find sup(S) where

S =
{
n2(−1)n | n ∈ N

}
= {−1, 4,−9, 16, · · · }

Picture: Notice n2(−1)n jumps back and forth between y = x2 and
y = −x2
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Let M be given, we need to find some s1 = n2(−1)n ∈ S such that
s1 > M .
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Scratchwork: Notice that n2(−1)n gets bigger for even n, and if n is
even, then n2(−1)n = n2. Also n2 > M ⇒ n >

√
M

Actual Proof: Let n be any even integer4 such that n >
√
M and

let s1 = n2(−1)n ∈ S, then

s1 = n2(−1)n = n2 > (
√
M)2 = M✓

Hence sup(S) = ∞.

Note: This officially concludes our exploration of the real numbers. If
you’re interested, at the end there is an optional discussion of how to
construct the real numbers and actually prove the least upper bound
property, which I invite you to check out.

4. Sequences

Video: What is a Sequence?

With that said, welcome to our Sequence adventure! In this chapter,
we’ll study sequences, which are infinite lists of numbers.

Intuitively:

A sequence (sn)n∈N is an infinite list of real numbers.

Examples:

(1) sn = 1
n2 , n ∈ N, so (sn) =

(
1, 14 ,

1
9 , · · ·

)
4In the case M < 0, just let n = 2

https://youtu.be/collx3am6II
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(2) sn = (−1)n, n ≥ 0, so (sn) = (1,−1, 1,−1, 1, · · ·). This sequence
jumps back and forth between 1 and −1. It’s a great source of
counterexamples.

(3) sn = cos
(
πn
2

)
, n ≥ 0, which is (1, 0,−1, 0, 1, 0,−1, 0, · · ·)

(4) sn = (−1)n

n , which jumps back and forth between positive and
negative values, but which seems to go to 0
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Actual Definition:

A sequence (sn)n∈N is a function from N to R

Why? Because for natural number n, you associate a real number
sn. For example, the sequence sn = 1

n2 is the same as the function

f(n) = 1
n2 . In fact f(1) = 1, f(2) = 1

4 , f(3) =
1
9 · · · .

5. Limits of Sequences

Video: What is a limit?

Goal: Figure out what happens to sn as n goes to ∞.

Example: Consider sn = 3− 1
n2 .

https://youtu.be/GghShJHvxTY
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Intuitively, sn approaches to s = 3 as n goes to ∞, and our goal is to
make this rigorous.

Intuitively:

limn→∞ sn = s means that if n is large, then sn goes to s

First of all, sn goes to s means that dist(sn, s) = |sn − s| is small.

In other words, we can make |sn − s| as small as we want, by letting
n be large enough.

That is, there is some threshold N such that, after N , |sn − s| is as
small as we want.

Finally, what does as small as we want mean? For astronomers, 10 km
is small, but 10 km for microbiologists is actually pretty big! In some
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sense, we want a definition that makes everyone happy.

Let ϵ > 0 (think error or tolerance, so ϵ = 10 km for astronomers, and
ϵ = 1nm for biologists), then:

Ultra Important Definition of a Limit:

lim
n→∞

sn = s means:

For all ϵ > 0 there is some N such that if n > N , then |sn − s| < ϵ

That is, no matter how small our error ϵ is, there is some threshold N
such that, once you pass the threshold (n > N) then your can guaran-
tee that sn is at most ϵ away from s.

Note:

|sn − s| < ϵ ⇒ −ϵ < sn − s < ϵ ⇒ s− ϵ < sn < s+ ϵ
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So in other words we can always guarantee that sn is in the small in-
terval (s− ϵ, s+ ϵ)

Analogy: Think of sn as an airplane and (s − ϵ, s + ϵ) as a runway.
What this is saying is that, no matter how small our runway is, we can
always guarantee that the plane sn lands in the runway if N is large
enough.

In the next lectures, we’ll practice with the rigorous definition of a
limit, so that you can get a feel for it. This is very important for the
exams.

6. Optional: Construction of R
Video: Construction of R

Even though we’ve been talking about the real numbers, we never ac-
tually defined what a real number is! That’s precisely what we’re going
to do now. As an added benefit, we’ll be able to prove the least upper
bound property (so it’s not an axiom after all!)

Goal: Construct the real numbers from the rational numbers.

Motivation: How would you define
√
2 using only rational numbers,

without ever mentioning the number
√
2 ?

Consider the following set S (recall
√
2 ≈ 1.414)

S =
{
r ∈ Q | r <

√
2
}
=

{
1,−2,

4

7
, 0, 1.2, 1.41,−3.6, · · ·

}

https://youtu.be/ZWRnZhYv0G0
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In other words, S is the set of all rational numbers that come before√
2.

Upshot: Strictly speaking, the set
{
1,−2, 47 , 0, 1.2, 1.41,−3.6, · · ·

}
doesn’t mention

√
2 at all; to the naked eye, it is just a random set of

rational numbers. And that’s precisely how we’ll define real numbers,
simply as special sets of rational numbers.

Definition:

A real number S is a subset of Q with the following propertiesa

(called a Cut):

(1) S ̸= ∅ and S ̸= Q

(2) If r ∈ S and if s is any rational with s < r, then s ∈ S

(3) If r ∈ S, then there is some s ∈ S such that s > r
aThe book uses α instead of S

Note: (2) is just saying that S contains all the rationals before r, like
in the following picture:
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Note: (3) is saying that S has no maximum: No matter which s ∈ S
you pick, there’s always a bigger element r ∈ S

Notice the subtle difference between (2) and (3). In (2) we say for all
s < r, s ∈ S, but in (3) we say there is s ∈ S with s > r

Important Example: If a ∈ Q is given, then

S = a⋆ = {r ∈ Q | r < a}

This is a rational cut and written as a⋆,

So for instance

1⋆ = {r ∈ Q | r < 1} = {−2.3,−1, 0, 0.5, 0.99, · · · }
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Non-Examples:

(a) ∅,Q: doesn’t satisfy (1)

(b) S = {r ∈ Q | 0 < r < 2}: Doesn’t satisfy (2): 1 ∈ S and −1 < 1
but −1 /∈ S. Similarly, S = {r ∈ Q | r > 2} is not a cut: 3 ∈ S
and −1 < 3 but −1 /∈ S

(c) S =
{
r ∈ Q | r ≤ 1

2

}
: Doesn’t satisfy (3) because S has a max-

imum of 1
2 : r =

1
2 ∈ S but there is no s ∈ S with s > 1

2

Examples:

(a) S =
{
1,−2, 47 , 0, 1.2, 1.41,−3.6, · · ·

}
(again some specific set of

rational numbers, all that are <
√
2) is a cut, called

√
2 (but

see a more concrete version below)
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(b) S =
{
r ∈ Q | r3 < 2

}
is a cut, called 3

√
2.

(d) S =
{
r ∈ Q | r2 < 2

}
is NOT a cut: 0 ∈ S and −4 < 0 but

−4 /∈ S. BUT S = {r ∈ Q | r ≤ 0} ∪
{
r ∈ Q | r2 < 2

}
is a cut,

called
√
2

Now that we defined what a cut is, let’s see what operations we can
do on them (just like operations on real numbers)

Definition:

If S and T are cuts, then

S + T = {s+ t | s ∈ S and t ∈ T}

Fact:

If S and T are cuts, then S + T is a cut

Note: Multiplication of cuts is trickier to define; in particular S · T is
NOT {st | s ∈ S and t ∈ T}5

5See Pugh’s book if you want to see how to define S × T
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Definition:

R = Set of all cuts in Q

Fact:

With + and · defined at above, R is a field (section 3)

Lastly, we can define an ordering on cuts simply as follows:

Definition:

If S and T are cuts, then S ≤ T means S ⊆ T

For example:

1⋆ = {r ∈ Q | r < 1} ⊆ {r ∈ Q | r < 2} = 2⋆

So by definition 1⋆ ≤ 2⋆

Fact:

With ≤ defined at above, R becomes an ordered field (section 3)

Since we can identify rational numbers a with rational cuts a⋆, with
this identification, we can say that R “includes” Q (although, strictly
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speaking, elements of R are cuts, but elements of Q are rational num-
bers)

7. Optional: Proof of the Least Upper Bound

Property

Video: Least Upper Bound Property Proof

Why care about cuts? Because using them we can easily prove the
least upper bound property. It’s the elegance of the proof below that
is the fruit of all our hard labor!

Least Upper Bound Property for Cuts:

If S is a nonempty set of cuts (= real numbers) that is bounded
above, then S has a least upper bound.

Proof: Let M be the union of all the cuts S ∈ S, that is:

M = {r ∈ Q | r ∈ S for some S ∈ S}

https://youtu.be/aRqabK3-f8I
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(STEP 1) Claim: M is a cut

First of all, M ̸= ∅ because any cut S is nonempty (by defini-
tion) and M is just the union over all the cuts S.

Let’s show M ̸= Q. Let B be an upper bound for S (which
exists by our assumption). By definition of upper bound, for all
S ∈ S, S ≤ B, meaning that S ⊆ B. Therefore, if you take the
union ∪S over all S ∈ S, it is still true thatM = ∪S ⊆ B, hence
M ⊆ B and since B ̸= Q (Because B < ∞) we obtainM ̸= Q✓
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Suppose r ∈ M and s < r. By definition of M , there is S ∈ S
with r ∈ S. But since s < r and S is a cut, we get s ∈ S ⊆ M ,
so s ∈ M . ✓

Suppose r ∈ M . By definition of M , there is S ∈ S with r ∈ S.
But then since S is a cut, there is s ∈ S with s > r. Since
S ⊆ M , we get s ∈ M . So there is s ∈ M such that s > r ✓.

(STEP 2) Claim: M is an upper bound for S.
This just follows from the definition of M as a union: Namely
if S ∈ S, then by definition of M , S ⊆ M . So for all S ∈ S,
S ≤ M ✓

(STEP 3) Claim: M is the least upper bound for S
Let M1 be any other upper bound for S, meaning for all S ∈ S,
S ≤ M1, that is S ⊆ M1. Then, if you take the union over
all S ∈ S, we get ∪S ⊆ M1, that is M ⊆ M1 (by definition
of M), so M ≤ M1. This means that M is indeed the least
upper bound: any other upper bound M1 must be greater than
or equal to M ✓ □
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