LECTURE 4: FUN WITH LINES

Today: We'll learn about a new way to describe lines, which is especially useful in this course.

1. Direction Vectors

Example 1: (Motivation)

Look at the line $y=3 x+2$

Notice two things about the line:
Date: Monday, September 6, 2021.
(1) It goes through a point $(0,2)$
(2) It has direction vector $\langle 1,3\rangle$
(A direction vector is like a slope; tells you the direction a line is going).
Those two things characterize a line, as the next example shows:

Example 2

Find the equation of the line going through $(2,3)$ and direction vector $\langle 5,-8\rangle$

Main Idea: You're starting at the point $(2,3)$ and moving forward and backward in the direction $\langle 5,-8\rangle$, so we can naturally describe the line with parametric equations, as follows:

Fact:

The parametric equations of the line are given by:

$$
\left\{\begin{array}{l}
x(t)=2+5 t \\
y(t)=3-8 t
\end{array}\right.
$$

(Recall that parametric equations means that for every time t, you have a point $(x(t), y(t))$ on the line. Makes sense, since lines are onedimensional)

Note: This line can also be described in vector form as follows:

Vector Form:

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle 2,3\rangle+t\langle 5,-8\rangle=\langle 2+5 t, 3-8 t\rangle
$$

Example 3: (Extra Practice)

Find parametric and vector equations of the line going through $(1.2,3)$ and direction vector $\langle 4,5,6\rangle$

Parametric Equations:

$$
\left\{\begin{array}{l}
x(t)=1+4 t \\
y(t)=2+5 t \\
z(t)=3+6 t
\end{array}\right.
$$

Vector Equations:
$\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=\langle 1,2,3\rangle+t\langle 4,5,6\rangle=\langle 1+4 t, 2+5 t, 3+6 t\rangle$

2. Some properties

Let's illustrate some properties via some examples.
Example 4: (Good quiz/exam question)
Find parametric equations of the line going through $A=(2,4,-3)$ and $B=(3,-1,1)$

(1) Point: $A=(2,4,-3)$
(2) Direction vector:

$$
\overrightarrow{A B}=\langle 3-2,-1-4,1+3\rangle=\langle 1,-5,4\rangle
$$

(3) Answer:

$$
\left\{\begin{array}{l}
x(t)=2+t \\
y(t)=4-5 t \\
z(t)=-3+4 t
\end{array}\right.
$$

Example 5: (extra practice)

At which point does the line above intersect the following plane:

$$
2 x+3 y+z=4
$$

All you need to do is to plug in your formulas for x, y, z in the above equation:

$$
\begin{aligned}
2 x+3 y+z & =4 \\
2(2+t)+3(4-5 t)+(-3+4 t) & =4 \quad \text { (see above) } \\
4+2 t+12-15 t-3+4 t & =4 \\
-9 t & =4-4-12+3 \\
-9 t & =-9 \\
t & =1
\end{aligned}
$$

And so the point of intersection is:

$$
\left\{\begin{array}{l}
x(1)=2+1=3 \\
y(1)=4-5(1)=-1 \\
z(1)=-3+4(1)=1
\end{array}\right.
$$

Answer: $(3,-1,1)$

Example 6:

Find the vector equations of the line going through $(-1,4,5)$ and parallel to the line with equation $\mathbf{r}(t)=\langle 2+2 t, 6 t, 1+3 t\rangle$

(1) Point: $(-1,4,5)$

(2) Direction vector:

Since the two lines are parallel, they have the same direction vector, and so the direction vector is $\langle 2,6,3\rangle$
(3) Answer: $\mathbf{s}(t)=\langle-1+2 t, 4+6 t, 5+3 t\rangle$

Example 7: (Symmetric Equations)

Find the symmetric equations of the line going through $(2,-3,-1)$ and direction vector $\langle 2,2,-4\rangle$

STEP 1: First find the parametric equations:

$$
\left\{\begin{array}{l}
x(t)=2+2 t \\
y(t)=-3+2 t \\
z(t)=-1-4 t
\end{array}\right.
$$

STEP 2: Solve for t in x, y, z :

$$
\left\{\begin{array}{c}
x=2+2 t \Rightarrow 2 t=x-2 \Rightarrow t=\frac{x-2}{2} \\
y=-3+2 t \Rightarrow 2 t=y+3 \Rightarrow t=\frac{y+3}{2} \\
z=-1-4 t \Rightarrow-4=z+1 \Rightarrow t=\frac{z+1}{-4}
\end{array}\right.
$$

STEP 3:

Fact: (Symmetric Equations)

The symmetric equations are

$$
\frac{x-2}{2}=\frac{y+3}{2}=\frac{z+1}{-4}
$$

More generally, if the point is $\left(x_{0}, y_{0}, z_{0}\right)$ and the direction vector is $\langle a, b, c\rangle$, we get:

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Note: Symmetric equations are the closest generalization to the equation $y=a x+b$ in two dimensions. But other than that they are kind of useless.

Oftentimes it will be useful to parametrize the segment between two points, instead of the whole line. For this, there is a nice shortcut.

Example 8: (Line Segment)

Find the parametric equations of the line segment between

$$
A=(7,6) \text { and } B=(9,10)
$$

Method 1: Find the parametric equations

(1) Point: $(7,6)$
(2) Direction Vector: $\overrightarrow{A B}=\langle 9-7,10-6\rangle=\langle 2,4\rangle$
(3) Equations:

$$
\left\{\begin{aligned}
x(t)= & 7+2 t \\
y(t)= & 6+4 t \\
& (0 \leq t \leq 1)
\end{aligned}\right.
$$

Note: The restriction $0 \leq t \leq 1$ is important, otherwise you're just describing the whole line. Indeed, you can check that at $t=0$, you're at $(7,6)$ and at $t=1$, you're at $(9,10)$.

Method 2: Faster Way (but basically the same as before)

$$
\left\{\begin{aligned}
x(t)= & (1-t) 7+t(9) \\
y(t)= & (1-t) 6+t(10) \\
& (0 \leq t \leq 1)
\end{aligned}\right.
$$

Note: Think of $(1-t)$ and t as on/off switches:
At $t=0$, we have $(1-t)=1$ (on) and $t=0$ (off), so we're at $(7,6)$
At $t=1$, we have $(1-t)=0$ (off) and $t=1$ (on), so we're at $(9,10)$.

3. Skew Lines

Finally, here is a nice application of direction vectors.
In 3 dimensions, lines can be either parallel, intersecting, or skew (neither parallel, nor intersecting):

Example 9: (Good quiz/exam question)

Are the following lines parallel, intersecting, or skew?

$$
\text { (a) } \quad L_{1}:\left\{\begin{array}{l}
x(t)=t+1 \\
y(t)=2 t+3 \\
z(t)=3 t-4
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x(s)=2 s+3 \\
y(s)=4 s-5 \\
z(s)=6 s-8
\end{array}\right.\right.
$$

L_{1} has direction vector $\langle 1,2,3\rangle$ and L_{2} has direction vector $\langle 2,4,6\rangle$. Since the direction vectors are parallel, hence the lines are parallel

$$
\text { (b) } \quad L_{1}:\left\{\begin{array}{l}
x(t)=t+1 \\
y(t)=t+2 \\
z(t)=t+3
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x(s)=2 s \\
y(s)=s+1 \\
z(s)=2 s+1
\end{array}\right.\right.
$$

The direction vector of L_{1} is $\langle 1,1,1\rangle$ and the direction vector of L_{2} is $\langle 2,1,2\rangle$ which are not parallel, so the lines either intersect or are skew. To figure this out, we need to solve all 3 equations.

$$
\left\{\begin{aligned}
t+1 & =2 s \\
t+2 & =s+1 \\
t+3 & =2 s+1
\end{aligned}\right.
$$

Here it's easiest to solve each equation one at a time. The first equation tells us $t=2 s-1$

Hence the second equation becomes:

$$
\begin{aligned}
t+2 & =s+1 \\
2 s-1+2 & =s+1 \\
2 s+1 & =s+1 \\
s & =0
\end{aligned}
$$

And therefore $t=2 s-1=2(0)-1=-1$
But then the third equation becomes:

$$
t+3=2 s+1 \Rightarrow(-1)+3=2(0)+1 \Rightarrow 2=1
$$

Which is a contradiction, and therefore the equation has no solution, and hence the lines are skew (= not parallel and they don't intersect).

$$
\text { (c) } \quad L_{1}:\left\{\begin{array}{l}
x(t)=t+1 \\
y(t)=t-2 \\
z(t)=t-3
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x(s)=2 s-1 \\
y(s)=3 s-5 \\
z(s)=4 s-7
\end{array}\right.\right.
$$

L_{1} has direction vector $\langle 1,1,1\rangle$ and L_{2} has direction vector $\langle 2,3,4\rangle$, which are not parallel.

Here again, let's determine the intersection (if any) by solving the equations:

$$
\left\{\begin{array}{l}
t+1=2 s-1 \\
t-2=3 s-5 \\
t-3=4 s-7
\end{array}\right.
$$

From the first equation, we get $t=(2 s-1)-1=2 s-2$
Then the second equation becomes:

$$
\begin{aligned}
t-2 & =3 s-5 \\
2 s-2-2 & =3 s-5 \\
2 s-4 & =3 s-5 \\
s & =-4+5 \\
s & =1
\end{aligned}
$$

And so $t=2(1)-2=0$, hence $\mathrm{s}=1, \mathrm{t}=0$
And the third equation becomes:

$$
\begin{aligned}
t-3 & =4 s-7 \\
0-3 & =4(1)-7 \\
-3 & =-3 \checkmark
\end{aligned}
$$

This means the points intersect, and to find the point of intersection, you can just let $t=0$ in L_{1} :

$$
\left\{\begin{array}{l}
x(0)=0+1=1 \\
y(0)=0-2=-2 \\
z(0)=0-3=-3
\end{array}\right.
$$

Answer: L_{1} and L_{2} intersect at the point $(1,-2,-3)$

Check: (Optional) To check your work, you can let $s=1$ in L_{2} and see if it gives you the same point:

$$
\left\{\begin{array}{l}
x(1)=2(1)-1=1 \\
y(1)=3(1)-5=-2 \\
z(1)=4(1)-7=-3
\end{array}\right.
$$

Summary: The following flowchart summarizes all the scenarios and how to check them:

