
LECTURE 4: FIXED POINTS AND ODE

1. The Banach Fixed Point Theorem

Video: Banach Fixed Point Theorem

Definition: p is a fixed point of f if f(p) = p

That is, p does not change when you apply f to it.

Question: When does a function have a fixed point?

Let (X, d) be a metric space

Definition: f : X → X is a contraction if there is k < 1 such that
for all x, y, we have

d(f(x), f(y)) ≤ kd(x, y)

Intuitively, f shrinks distances between points. Notice contractions
are continuous.

Theorem: [Banach Fixed Point Theorem] If X is complete and f is
a contraction, then f has a unique fixed point p.

Analogy: You may have noticed this phenomenon when you start
with a number on a calculator, and repeatedly apply cos or

√
x on it.
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Eventually the number stays the same!

Proof:1

STEP 1: Let x0 ∈ X and define xn = fn(x0) (f applied n times)

Notice d(x1, x2) = d(f(x0), f(x1)) ≤ kd(x0, x1) and

d(x2, x3) = d(f(x1), f(x2)) ≤ kd(x1, x2) ≤ kkd(x0, x1) = k2d(x0, x1)

And more generally you can show that

d(xn, xn+1) ≤ knd(x0, x1)

STEP 2: Claim: (xn) is Cauchy

Why? Let ε > 0 be given and N be TBA, then if m,n > N (WLOG
assume n ≥ m), then

d(xm, xn) ≤d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤kmd(x0, x1) + km+1d(x0, x1) + · · ·+ kn−1d(x1, x0) (By STEP 1)

≤
(
km + km+1 + · · ·+ kn−1

)
d(x1, x0)

=km
(
1 + k + · · ·+ kn−m−1

)
d(x0, x1)

≤km
(
1 + k + k2 + · · ·

)
d(x0, x1)

=km
(

1

1− k

)
d(x0, x1)

≤ kN

1− k
d(x0, x1) Since m > N and k < 1

1The proof is from Pugh’s book, Theorem 23 in Chapter 4
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But since k < 1 we have limn→∞ k
n = 0, so we can choose N large

enough so that kN

1−kd(x0, x1) < ε, which in turn implies d(xm, xn) < ε

STEP 3: Since (xn) is Cauchy and X is complete, (xn) converges to
some p

Claim: p is a fixed point of f .

This follows because

xn+1 =f(xn)

lim
n→∞

xn+1 = lim
n→∞

f(xn)

p =f
(

lim
n→∞

xn

)
(continuity)

p =f(p)X

STEP 4: Uniqueness: Suppose there are two fixed points p 6= q,
then

d(p, q) = d(f(p), f(q)) ≤ kd(p, q) < d(p, q)

Which is a contradiction �

2. Application to ODE

As an application, we can prove the celebrated ODE existence-uniqueness
theorem. Consider the ODE:{

y′ =f(y)

y(0) =y0

Recall: f is Lipschitz if there is L > 0 such that for every x, y, we
have |f(x)− f(y)| ≤ L |x− y|
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Theorem: [Picard-Lindelöf] If f is Lipschitz and y0 ∈ R, then for
some small τ > 0, there exists a solution y : [−τ, τ ]→ R of the ODE

Note: The solution is “locally unique,” in the sense below.

Proof:2

STEP 1: Main Observation: By integrating the ODE, it is equiv-
alent to ∫ t

0

y′(s)ds =

∫ t

0

f(y(s))ds

y(t)− y0 =

∫ t

0

f(y(s))ds

y(t) =y0 +

∫ t

0

f(y(s))ds

STEP 2: Let τ > 0 TBA

Since f is continuous, it is bounded around y0: There is some r > 0
and C > 0 such that |f(x)| ≤ C for all x ∈ [y0 − r, y0 + r].

Let X be the space of continuous functions y : [−τ, τ ]→ [y0− r, y0 + r]
with the sup norm.

Given y ∈ X, define Φ(y) ∈ X (to be shown) by

Φ(y)(t) = y0 +

∫ t

0

f(y(s))ds

We’re done once we show that Φ has a fixed point y, because then
Φ(y) = y and we get

2The proof is a simplified version of the one in Theorem 24 of Pugh’s book
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y(t) = y0 +

∫ t

0

f(y(s))dsX

STEP 3: Proof that Φ is a contraction

First show that Φ : X → X: Notice that if y is continuous, then
∫ t

0 f(y)
is continuous (in fact differentiable) and hence Φ(y)(t) is continuous.
Moreover

|Φ(y)(t)− y0| =
∣∣∣∣∫ t

0

f(y(s))ds

∣∣∣∣ ≤ ∫ t

0

|f(y)| ds ≤
∫ t

0

Cds = Ct ≤ Cτ ≤ r

Provided you choose τ such that τC ≤ r

Hence Φ(y) ∈ [y0 − r, y0 + r] and so Φ(y) ∈ X.

Moreover, Φ is a contraction because

d(Φ(y),Φ(z)) = sup
t

∣∣∣∣y0 +

∫ t

0

f(y(s))ds−
(
y0 +

∫ t

0

f(z(s))ds

)∣∣∣∣
≤ sup

t

∣∣∣∣∫ t

0

f(y(s))− f(z(s))ds

∣∣∣∣
≤ sup

t

∫ t

0

|f(y(s))− f(z(s))| ds

≤
∫ τ

0

|f(y(s))− f(z(s))| ds (the integral is increasing in t)

≤
∫ τ

0

(
sup
s
|f(y(s))− f(z(s))|

)
ds

=

(
sup
s
|f(y(s))− f(z(s))|

)∫ τ

0

1

≤L sup
s
|y(s)− z(s)| τ

=Lτd(y, z)
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This becomes a contraction provided we choose τ so that Lτ < 1

STEP 4: Uniqueness

Any other solution z(t) is also a fixed point of Φ, that is Φ(z) = z.
Since a contraction has a unique fixed point, we have z = y. This is
what local uniqueness means. �

3. Nowhere Differentiable Function

As a nice application of the ideas learned in this chapter, let’s con-
struct a function that is continuous but nowhere differentiable.

Theorem: There exists a continuous function on R that is differen-
tiable nowhere.

STEP 1: Start with φ(x) = |x| on [−1, 1] and extend it periodically
on R such that φ(x+ 2) = φ(x) (see picture in lecture)

Then for all x and y, we have

|φ(x)− φ(y)| ≤ |x− y|
Why? If x, y ∈ [−1, 1] this follows from ||x| − |y|| ≤ |x− y|, and for
general x, y, we can reduce to this case by periodicity.

In particular, φ is continuous on R

STEP 2: Define f as:

f(x) =
∞∑
k=0

(
3

4

)k
φ
(
4kx
)
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f is the superposition of zig-zag functions that become smaller but
crazier (see picture in lecture)

Claim: The series defining f converges uniformly

Why? Beautiful application of the WeierstraßM -test: Since |φ| ≤ 1

∣∣∣∣∣
(

3

4

)k
φ
(
4kx
)∣∣∣∣∣ =

∣∣∣∣34
∣∣∣∣k ∣∣φ (4kx)∣∣︸ ︷︷ ︸

≤1

≤
(

3

4

)k
︸ ︷︷ ︸
Mk

And
∑∞

k=0

(
3
4

)k
converges because it’s a geometric series.

In particular, since f is the uniform limit of the continuous partial
sums, f is continuous.

STEP 3: Claim: f is nowhere differentiable.

Idea: If f were differentiable at x, then for every sequence sn → 0,
f(x+sn)−f(x)

sn
would converge (to f ′(x)). But we will choose a clever sn

that will make this diverge.

Fix x and n and let

sn = ±
(

1

2

)
4−n

The sign is TBA. Notice sn → 0.

Consider the difference quotient
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f(x+ sn)− f(x)

sn
=
∞∑
k=0

(
3

4

)k(φ (4k (x+ sn)
)
− φ

(
4kx
)

sn

)
︸ ︷︷ ︸

ak

(we can rearrange the sum this way because of uniform convergence)

There are three cases now depending on whether k is small or large.

Case 1: k > n (k is large)

4k (x+ sn)−4kx = �
��4kx+4ksn−�

��4kx = 4k
(
±
(

1

2

)
4−n
)

= ±
(

1

2

)
4k−n︸ ︷︷ ︸

Even integer

By periodicity of φ, we get φ(4k(x+ sn))− φ(4kx) = 0, and so ak = 0

Case 2: k < n (k small) Then using the Lipschitz condition on φ:

|ak| =
∣∣φ (4k (x+ sn)

)
− φ

(
4kx
)∣∣

|sn|
≤
∣∣4k(x+ sn)− 4kx

∣∣
|sn|

=
4k |sn|
|sn|

= 4k

Case 3: k = n (k medium)

In that case 4k (x+ sn) = 4kx± 1
2 .

Now choose the sign ± in such a way that there are no integers between
4kx± 1

2 and 4kx. In that case φ is linear on that interval and we get

|an| =
∣∣φ (4kx± 1

2

)
− φ

(
4kx
)∣∣∣∣±1

2 (4−n)
∣∣ =

∣∣4kx± 1
2 − 4kx

∣∣
1
2 (4−n)

=
1
2

1
2 (4−n)

= 4n
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STEP 4: Therefore by the 3 cases we have

∣∣∣∣f(x+ sn)− f(x)

sn

∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(
3

4

)k
ak

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

(
3

4

)k
ak +

(
3

4

)n
an +

∞∑
k=n+1

(
3

4

)k
0

∣∣∣∣∣
=

∣∣∣∣∣
(

3

4

)n
an −

(
−

n−1∑
k=0

(
3

4

)k
ak

)∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣(3

4

)n
an

∣∣∣∣−
∣∣∣∣∣−

n−1∑
k=0

(
3

4

)k
ak

∣∣∣∣∣
∣∣∣∣∣ Reverse triangle inequality

But

∣∣∣∣(3

4

)n
an

∣∣∣∣ =

(
3

4

)
|an|︸︷︷︸

4n

= 3n

And

∣∣∣∣∣−
n−1∑
k=0

(
3

4

)k
ak

∣∣∣∣∣ ≤
n−1∑
k=0

(
3

4

)k
|ak|︸︷︷︸
≤4k

≤
n−1∑
k=0

3k =
3n − 1

3− 1
=

1

2
(3n − 1)

Therefore

∣∣∣∣f(x+ sn)− f(x)

sn

∣∣∣∣ ≥ ∣∣∣∣3n − 1

2
(3n) +

1

2

∣∣∣∣ =
3n + 1

2

n→∞→ ∞

So the limit does not exist, and f is not differentiable at x �

Aside: This function f is not the exception, but the rule! In general,
the “generic” function is nowhere differentiable: If you pick a contin-
uous function at random, chances are that it’s nowhere differentiable.
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