LECTURE 4: FIXED POINTS AND ODE

1. THE BANACH FIXED POINT THEOREM
Video: Banach Fixed Point Theorem

Definition: p is a fixed point of f if f(p) =p
That is, p does not change when you apply f to it.
Question: When does a function have a fixed point?
Let (X, d) be a metric space

Definition: f : X — X is a contraction if there is £ < 1 such that
for all z,y, we have

d(f(z), f(y)) < kd(z,y)

Intuitively, f shrinks distances between points. Notice contractions
are continuous.

Theorem: [Banach Fixed Point Theorem| If X is complete and f is
a contraction, then f has a unique fixed point p.

Analogy: You may have noticed this phenomenon when you start
with a number on a calculator, and repeatedly apply cos or \/z on it.
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https://www.youtube.com/watch?v=9jL8iHw0ans

2 LECTURE 4: FIXED POINTS AND ODE
Eventually the number stays the same!

Proof]

STEP 1: Let 2y € X and define x,, = f"(x¢) (f applied n times)
Notice d(z1,x2) = d(f(z0), f(z1)) < kd(zo, 1) and

d(z2,x3) = d(f(x1), f(x2)) < kd(1, 22) < kkd(x0, 1) = K*d(20, 71)

And more generally you can show that

d(zp, Tpi1) < K"d(z0, 21)

STEP 2: Claim: (z,) is Cauchy

Why? Let € > 0 be given and N be TBA, then if m,n > N (WLOG
assume n > m), then

d(m, xn) <d(Tpm, Tmy1) + d(Xma1, Tmao) + -+ d(Tp1, Tp)
<k™d(x, 1) + K" d(xg, 21) + - -+ K" (21, 20) (By STEP 1)
< (K™ 4+ K™ 4+ B d(, o)
k" (L+k+- -+ k") d(xo, 1)
<k™ (L4 k+k + ) d(zo, 1)

_m (ﬁ) d(z0,71)

]{ZN
Sﬁd(l‘o,xl) Since m > N and k < 1

IThe proof is from Pugh’s book, Theorem 23 in Chapter 4
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But since £ < 1 we have lim,_,, k" = 0, so we can choose N large
N
enough so that £—d(zo, 21) < €, which in turn implies d(z,,, z,) < € v

STEP 3: Since (z,) is Cauchy and X is complete, (x,) converges to
some p

Claim: p is a fixed point of f.
This follows because

Ln+1 :f(xn)

lim z,41 = lim f(x,)
n—oo n—oo

p=f <lim :z:n> (continuity)
n—od
p=f(p)v
STEP 4: Uniqueness: Suppose there are two fixed points p # ¢,
then
d(p,q) = d(f(p), f(q)) < kd(p,q) < d(p,q)
Which is a contradiction [

2. APPLICATION TO ODE

As an application, we can prove the celebrated ODE existence-uniqueness
theorem. Consider the ODE:

{ v =f(y)

y(0) =vo

Recall: f is Lipschitz if there is L > 0 such that for every x,y, we
have |f(z) = f(y)| < L]z -yl
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Theorem: [Picard-Lindel6f] If f is Lipschitz and y, € R, then for
some small 7 > 0, there exists a solution y : [—7, 7] — R of the ODE

Note: The solution is “locally unique,” in the sense below.
Proof

STEP 1: Main Observation: By integrating the ODE, it is equiv-

alent to
[ s = [ sotsnas

y@—m=£f@@ﬂs

t
yw=m+/f@@ws
0
STEP 2: Let 7 > 0 TBA

Since f is continuous, it is bounded around gy: There is some r > 0
and C' > 0 such that |f(z)| < C for all x € [yo — r,yo + 7]

Let X be the space of continuous functions y : [—7, 7] — [yo — 7, Yo + 7]
with the sup norm.

Given y € X, define ®(y) € X (to be shown) by

®@®=m+AfMW%

We're done once we show that & has a fixed point y, because then
®(y) = y and we get,

2The proof is a simplified version of the one in Theorem 24 of Pugh’s book
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= Y0 +/ fy(s))dsv
STEP 3: Proof that ¢ is a contraction

First show that ® : X — X: Notice that if y is continuous, then fot f(y)
is continuous (in fact differentiable) and hence ®(y)(¢) is continuous.

Moreover
/f ))ds /If |d$</CdS—Ct<C’T<7“

Provided you choose 7 such that 7C < r

| Z/0| =

Hence ®(y) € [yo — 7, yo + 7] and so ®(y) € X.

Moreover, ® is a contraction because

0(y), 8(2)) =swp | + / Fly(s))ds — <yo+ / i )|
SSItlp f y(s)) — f(2(s))ds

0
t

< sup i |f(y(s)) — f(z(s))|ds

< | |f(y(s)) — f(z(s))|ds (the integral is increasing in t)
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This becomes a contraction provided we choose 7 so that L7 < 1
STEP 4: Uniqueness

Any other solution z(t) is also a fixed point of ®, that is ®(z) = z.
Since a contraction has a unique fixed point, we have z = y. This is
what local uniqueness means. ]

3. NOWHERE DIFFERENTIABLE FUNCTION

As a nice application of the ideas learned in this chapter, let’s con-
struct a function that is continuous but nowhere differentiable.

Theorem: There exists a continuous function on R that is differen-
tiable nowhere.

STEP 1: Start with ¢(z) = |z| on [—1,1] and extend it periodically
on R such that ¢(z + 2) = ¢(z) (see picture in lecture)

Then for all z and y, we have

[6(2) = o(y)| < |z —y|
Why? If z,y € [—1,1] this follows from ||z| — |y|| < |z — y|, and for
general x,y, we can reduce to this case by periodicity.

In particular, ¢ is continuous on R

STEP 2: Define f as:
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f is the superposition of zig-zag functions that become smaller but
crazier (see picture in lecture)

Claim: The series defining f converges uniformly

Why? Beautiful application of the Weierstrafl M-test: Since |¢| < 1

3) o

:'3

1 ey« (3)

4

My,

o0 3 k' .9 . .
And Y~ /7, (Z) converges because it’s a geometric series.

In particular, since f is the uniform limit of the continuous partial
sums, f is continuous.

STEP 3: Claim: f is nowhere differentiable.

Idea: If f were differentiable at z, then for every sequence s, — 0,

Haton)—fz) (HS;)_f ) would converge (to f'(x)). But we will choose a clever s,

that will make this diverge.

1
S, = &£ (—> 4"
2

The sign is TBA. Notice s,, — 0.

Fix £ and n and let

Consider the difference quotient
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Sn

4
N J/
WV
ar

f(x+s,) — f() _i <3>k (¢ (4* (2 + s,)) — ¢(4kx)>

k=0

(we can rearrange the sum this way because of uniform convergence)
There are three cases now depending on whether £ is small or large.

Case 1: k£ > n (k is large)

4% (z + sp)— 4k = 474+ 4bs, — 4Bz = 4F <i (%) 4_n> . G) oo

—_—

Even integer

By periodicity of ¢, we get ¢(4%(x + s,,)) — ¢(4*2) = 0, and so a;, = 0

Case 2: k < n (k small) Then using the Lipschitz condition on ¢:

au = & (4% (x4 sp)) — ¢ (4F2)] _ 4% (z + s,) — 4" x| _ 4% s, _ gk
[sn] B |snl Sl

Case 3: k =n (k medium)

In that case 4% (z + s,) = 4Fz £ 1.

Now choose the sign 4 in such a way that there are no integers between
4k + % and 4*z. In that case ¢ is linear on that interval and we get

)¢ (@ar)| [rot;—dfaf _
E= N R Ve R V)
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STEP 4: Therefore by the 3 cases we have

f(x+3n)_f(x)

Sn

n—1 k n—1 k n—1
3 3 3" —1
k=0 k=0 B k=0 -
Therefore

flx+ s,) — f(x) 1 1| 3"+1 5%
> 13" —==3")+=| = —
‘ 5n = AR 2 >
So the limit does not exist, and f is not differentiable at x ]

Aside: This function f is not the exception, but the rule! In general,
the “generic” function is nowhere differentiable: If you pick a contin-
uous function at random, chances are that it’s nowhere differentiable.
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