LECTURE 4: FIXED POINTS AND ODE

1. The Banach Fixed Point Theorem

Video: Banach Fixed Point Theorem
Definition: p is a fixed point of f if $f(p)=p$
That is, p does not change when you apply f to it.
Question: When does a function have a fixed point?
Let (X, d) be a metric space
Definition: $f: X \rightarrow X$ is a contraction if there is $k<1$ such that for all x, y, we have

$$
d(f(x), f(y)) \leq k d(x, y)
$$

Intuitively, f shrinks distances between points. Notice contractions are continuous.

Theorem: [Banach Fixed Point Theorem] If X is complete and f is a contraction, then f has a unique fixed point p.

Analogy: You may have noticed this phenomenon when you start with a number on a calculator, and repeatedly apply \cos or \sqrt{x} on it.

Eventually the number stays the same!

Proof: ${ }^{11}$

STEP 1: Let $x_{0} \in X$ and define $x_{n}=f^{n}\left(x_{0}\right)(f$ applied n times)
Notice $d\left(x_{1}, x_{2}\right)=d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \leq k d\left(x_{0}, x_{1}\right)$ and
$d\left(x_{2}, x_{3}\right)=d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq k d\left(x_{1}, x_{2}\right) \leq k k d\left(x_{0}, x_{1}\right)=k^{2} d\left(x_{0}, x_{1}\right)$
And more generally you can show that

$$
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)
$$

STEP 2: Claim: $\left(x_{n}\right)$ is Cauchy
Why? Let $\epsilon>0$ be given and N be TBA, then if $m, n>N$ (WLOG assume $n \geq m$), then

$$
\begin{align*}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{m+2}\right)+\cdots+d\left(x_{n-1}, x_{n}\right) \\
& \leq k^{m} d\left(x_{0}, x_{1}\right)+k^{m+1} d\left(x_{0}, x_{1}\right)+\cdots+k^{n-1} d\left(x_{1}, x_{0}\right) \tag{BySTEP1}\\
& \leq\left(k^{m}+k^{m+1}+\cdots+k^{n-1}\right) d\left(x_{1}, x_{0}\right) \\
& =k^{m}\left(1+k+\cdots+k^{n-m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq k^{m}\left(1+k+k^{2}+\cdots\right) d\left(x_{0}, x_{1}\right) \\
& =k^{m}\left(\frac{1}{1-k}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right) \quad \text { Since } m>N \text { and } k<1
\end{align*}
$$

[^0]But since $k<1$ we have $\lim _{n \rightarrow \infty} k^{n}=0$, so we can choose N large enough so that $\frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right)<\epsilon$, which in turn implies $d\left(x_{m}, x_{n}\right)<\epsilon \checkmark$

STEP 3: Since $\left(x_{n}\right)$ is Cauchy and X is complete, $\left(x_{n}\right)$ converges to some p

Claim: p is a fixed point of f.
This follows because

$$
\begin{aligned}
x_{n+1} & =f\left(x_{n}\right) \\
\lim _{n \rightarrow \infty} x_{n+1} & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \\
p & =f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { (continuity) } \\
p & =f(p) \checkmark
\end{aligned}
$$

STEP 4: Uniqueness: Suppose there are two fixed points $p \neq q$, then

$$
d(p, q)=d(f(p), f(q)) \leq k d(p, q)<d(p, q)
$$

Which is a contradiction

2. Application to ODE

As an application, we can prove the celebrated ODE existence-uniqueness theorem. Consider the ODE:

$$
\left\{\begin{aligned}
y^{\prime} & =f(y) \\
y(0) & =y_{0}
\end{aligned}\right.
$$

Recall: f is Lipschitz if there is $L>0$ such that for every x, y, we have $|f(x)-f(y)| \leq L|x-y|$

Theorem: [Picard-Lindelöf] If f is Lipschitz and $y_{0} \in \mathbb{R}$, then for some small $\tau>0$, there exists a solution $y:[-\tau, \tau] \rightarrow \mathbb{R}$ of the ODE

Note: The solution is "locally unique," in the sense below.
Proof: \square^{2}
STEP 1: Main Observation: By integrating the ODE, it is equivalent to

$$
\begin{aligned}
\int_{0}^{t} y^{\prime}(s) d s & =\int_{0}^{t} f(y(s)) d s \\
y(t)-y_{0} & =\int_{0}^{t} f(y(s)) d s \\
y(t) & =y_{0}+\int_{0}^{t} f(y(s)) d s
\end{aligned}
$$

STEP 2: Let $\tau>0$ TBA
Since f is continuous, it is bounded around y_{0} : There is some $r>0$ and $C>0$ such that $|f(x)| \leq C$ for all $x \in\left[y_{0}-r, y_{0}+r\right]$.

Let X be the space of continuous functions $y:[-\tau, \tau] \rightarrow\left[y_{0}-r, y_{0}+r\right]$ with the sup norm.

Given $y \in X$, define $\Phi(y) \in X$ (to be shown) by

$$
\Phi(y)(t)=y_{0}+\int_{0}^{t} f(y(s)) d s
$$

We're done once we show that Φ has a fixed point y, because then $\Phi(y)=y$ and we get

[^1]$$
y(t)=y_{0}+\int_{0}^{t} f(y(s)) d s \checkmark
$$

STEP 3: Proof that Φ is a contraction

First show that $\Phi: X \rightarrow X$: Notice that if y is continuous, then $\int_{0}^{t} f(y)$ is continuous (in fact differentiable) and hence $\Phi(y)(t)$ is continuous. Moreover
$\left|\Phi(y)(t)-y_{0}\right|=\left|\int_{0}^{t} f(y(s)) d s\right| \leq \int_{0}^{t}|f(y)| d s \leq \int_{0}^{t} C d s=C t \leq C \tau \leq r$
Provided you choose τ such that $\tau C \leq r$
Hence $\Phi(y) \in\left[y_{0}-r, y_{0}+r\right]$ and so $\Phi(y) \in X$.
Moreover, Φ is a contraction because

$$
\begin{aligned}
d(\Phi(y), \Phi(z)) & =\sup _{t}\left|y_{0}+\int_{0}^{t} f(y(s)) d s-\left(y_{0}+\int_{0}^{t} f(z(s)) d s\right)\right| \\
& \leq \sup _{t}\left|\int_{0}^{t} f(y(s))-f(z(s)) d s\right| \\
& \leq \sup _{t} \int_{0}^{t}|f(y(s))-f(z(s))| d s \\
& \left.\leq \int_{0}^{\tau}|f(y(s))-f(z(s))| d s \text { (the integral is increasing in } t\right) \\
& \leq \int_{0}^{\tau}\left(\sup _{s}|f(y(s))-f(z(s))|\right) d s \\
& =\left(\sup _{s}|f(y(s))-f(z(s))|\right) \int_{0}^{\tau} 1 \\
& \leq L \sup _{s}|y(s)-z(s)| \tau \\
& =L \tau d(y, z)
\end{aligned}
$$

This becomes a contraction provided we choose τ so that $L \tau<1$

STEP 4: Uniqueness

Any other solution $z(t)$ is also a fixed point of Φ, that is $\Phi(z)=z$. Since a contraction has a unique fixed point, we have $z=y$. This is what local uniqueness means.

3. Nowhere Differentiable Function

As a nice application of the ideas learned in this chapter, let's construct a function that is continuous but nowhere differentiable.

Theorem: There exists a continuous function on \mathbb{R} that is differentiable nowhere.

STEP 1: Start with $\phi(x)=|x|$ on $[-1,1]$ and extend it periodically on \mathbb{R} such that $\phi(x+2)=\phi(x)$ (see picture in lecture)

Then for all x and y, we have

$$
|\phi(x)-\phi(y)| \leq|x-y|
$$

Why? If $x, y \in[-1,1]$ this follows from $||x|-|y|| \leq|x-y|$, and for general x, y, we can reduce to this case by periodicity.

In particular, ϕ is continuous on \mathbb{R}
STEP 2: Define f as:

$$
f(x)=\sum_{k=0}^{\infty}\left(\frac{3}{4}\right)^{k} \phi\left(4^{k} x\right)
$$

f is the superposition of zig-zag functions that become smaller but crazier (see picture in lecture)

Claim: The series defining f converges uniformly
Why? Beautiful application of the Weierstraß M-test: Since $|\phi| \leq 1$

$$
\left|\left(\frac{3}{4}\right)^{k} \phi\left(4^{k} x\right)\right|=\left|\frac{3}{4}\right|^{k} \underbrace{\left|\phi\left(4^{k} x\right)\right|}_{\leq 1} \leq \underbrace{\left(\frac{3}{4}\right)^{k}}_{M_{k}}
$$

And $\sum_{k=0}^{\infty}\left(\frac{3}{4}\right)^{k}$ converges because it's a geometric series.
In particular, since f is the uniform limit of the continuous partial sums, f is continuous.

STEP 3: Claim: f is nowhere differentiable.
Idea: If f were differentiable at x, then for every sequence $s_{n} \rightarrow 0$, $\frac{f\left(x+s_{n}\right)-f(x)}{s_{n}}$ would converge (to $\left.f^{\prime}(x)\right)$. But we will choose a clever s_{n} that will make this diverge.

Fix x and n and let

$$
s_{n}= \pm\left(\frac{1}{2}\right) 4^{-n}
$$

The sign is TBA. Notice $s_{n} \rightarrow 0$.
Consider the difference quotient

$$
\frac{f\left(x+s_{n}\right)-f(x)}{s_{n}}=\sum_{k=0}^{\infty}\left(\frac{3}{4}\right)^{k} \underbrace{\left(\frac{\phi\left(4^{k}\left(x+s_{n}\right)\right)-\phi\left(4^{k} x\right)}{s_{n}}\right)}_{a_{k}}
$$

(we can rearrange the sum this way because of uniform convergence)
There are three cases now depending on whether k is small or large.
Case 1: $k>n(k$ is large $)$
$4^{k}\left(x+s_{n}\right)-4^{k} x=4^{k} x+4^{k} s_{n}-4^{k} x=4^{k}\left(\pm\left(\frac{1}{2}\right) 4^{-n}\right)= \pm \underbrace{\left(\frac{1}{2}\right) 4^{k-n}}_{\text {Even integer }}$
By periodicity of ϕ, we get $\phi\left(4^{k}\left(x+s_{n}\right)\right)-\phi\left(4^{k} x\right)=0$, and so $a_{k}=0$
Case 2: $k<n$ (k small) Then using the Lipschitz condition on ϕ :

$$
\left|a_{k}\right|=\frac{\left|\phi\left(4^{k}\left(x+s_{n}\right)\right)-\phi\left(4^{k} x\right)\right|}{\left|s_{n}\right|} \leq \frac{\left|4^{k}\left(x+s_{n}\right)-4^{k} x\right|}{\left|s_{n}\right|}=\frac{4^{k}\left|s_{n}\right|}{\left|s_{n}\right|}=4^{k}
$$

Case 3: $k=n$ (k medium)
In that case $4^{k}\left(x+s_{n}\right)=4^{k} x \pm \frac{1}{2}$.
Now choose the sign \pm in such a way that there are no integers between $4^{k} x \pm \frac{1}{2}$ and $4^{k} x$. In that case ϕ is linear on that interval and we get

$$
\left|a_{n}\right|=\frac{\left|\phi\left(4^{k} x \pm \frac{1}{2}\right)-\phi\left(4^{k} x\right)\right|}{\left| \pm \frac{1}{2}\left(4^{-n}\right)\right|}=\frac{\left|4^{k} x \pm \frac{1}{2}-4^{k} x\right|}{\frac{1}{2}\left(4^{-n}\right)}=\frac{\frac{1}{2}}{\frac{1}{2}\left(4^{-n}\right)}=4^{n}
$$

STEP 4: Therefore by the 3 cases we have

Therefore

$$
\left|\frac{f\left(x+s_{n}\right)-f(x)}{s_{n}}\right| \geq\left|3^{n}-\frac{1}{2}\left(3^{n}\right)+\frac{1}{2}\right|=\frac{3^{n}+1}{2} \xrightarrow{n \rightarrow \infty} \infty
$$

So the limit does not exist, and f is not differentiable at x
Aside: This function f is not the exception, but the rule! In general, the "generic" function is nowhere differentiable: If you pick a continuous function at random, chances are that it's nowhere differentiable.

[^0]: ${ }^{1}$ The proof is from Pugh's book, Theorem 23 in Chapter 4

[^1]: ${ }^{2}$ The proof is a simplified version of the one in Theorem 24 of Pugh's book

