LECTURE 40: SURFACE INTEGRALS (II)

1. SURFACE INTEGRALS OF VECTOR FIELDS

Goal: Given a vector field F' and a surface S, want to sum up the
values of F' over S

- F —— 5
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Sum up all the vectors on S

For line integrals, we dotted F' with the tangent vector r/(¢), this time
we dot F' with the normal vector n

Date: Friday, December 3, 2021.



2 LECTURE 40: SURFACE INTEGRALS (II)
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Surface Integral of F

//F ds = //F n—// ru%rv)dudv

n

Application: In Physics, [ [ F'-dS is called the net flux of F" across
S, measures how much F' flows in or out of S:

Scenario 1:

=)
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Here [ [¢F -dS > 0, F flows out of S, think water leaking out

Scenario 2:

Here F-n=0s0 [ [¢F-dS =0, F is tangent to S

Example 3: [ [(F-dS <0, F flows into S

=)
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2. EXAMPLE

Video: Surface Integral of a Vector Field

[ [Fas
S

F = <21;, 2y, 22> and S is the helicoid parametrized by

r(u,v) = (ucos(v),usin(v), v)
0<u<l
O0<v<rm

STEP 1: Picture:

N

-~ T S = TS S

STEP 2: Slopes


https://www.youtube.com/watch?v=W87qjie6a0I
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Ty = (cos(v),sin(v), 0)
ry = (—usin(v), ucos(v), 1)
STEP 3: Normal Vector
i ik
n=r,Xr,=| cos(v) sin(v) 0
—usin(v) wucos(v) 1
= (sin(v), — cos(v), u cos®(v) + usin®(v))
= (sin(v), — cos(v), u)
STEP 4: Integrate

//F-dS
// (ry X 1) dudv

// (2u cos(v 2usm() > {sin(v), — cos(v), u) dudv

TV
(2z 2yz ) Ty XTy

:/0 AW—Mva%dudv
/W/102ududv
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3. ORIENTATION
Warning

Orientation matters! Make sure n = r, X 7, points:
(1) Upwards (for graphs)

(2) Outwards (for closed surfaces like spheres)

=)

~ F

/\/

Rule of Thumb: Usually, but not always, check that the z compo-
nent is > 0 (but best to use a picture)

Calculate the net flux of F' = (0,0, z) across the surface S, where
S is the Sphere of radius 1 in the first octant
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STEP 1: Picture:

=)

STEP 2: Parametrize:
(6, ¢) = (sin(¢) cos(0), sin(¢) sin(f), cos(¢)) 0<60< g, 0<¢p<

bo |

STEP 3: Normal Vector: From the previous lecture, found

n=r1ryXry= < sinz(gb) cos(f), — sinQ(gb) sin(@),: sin(¢) cos(d>2>

~"

<0

/N @ points inwards, not outwards!
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Solution: Use —n instead:

7

n = <+ sin?(¢) cos(#), + sin?(¢) sin(6), + sin(¢) COS(¢)>

>0

STEP 4: Integrate

//SF-dS
://F-ﬁdedgb

/ / (0.0, cos( )>} (sin%(6) cos(0), sin2(9) sin(6), sin(¢) cos(s)) dbde

/ / sin(¢) cos(¢)dOde ”

5 m
]
-()(3)

Interesting Fact: There is a surface called the Mobius strip, where n
changes orientation, meaning that it goes from outside to inside! This
surface has no sides and is called a non-orientable surface. Needless to
say, but you cannot evaluate [ f ¢ I+ dS on it! H

Ipicture courtesy Science News



LECTURE 40: SURFACE INTEGRALS (II) 9

Why did the chicken cross the Mobius strip? To get to the same side!

4. THE CASE OF FUNCTIONS

//SF-dS F = (y,z,32)

S : Graph of z = xy over the disk of radius 1

STEP 1: Picture:

© X*+y*=1

:
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STEP 2: Parametrize

r(z,y) = (z,y, vy)

STEP 3: Slopes

=(1,0, (zy),) = (1,0, y)
- <0, 1, (:Ey)y> — (0,1, )

STEP 4: Normal Vector

N=1ry Xr,=

=S
— O .

k
i = <y, —x, 1 >\/ Upwards (for graphs)

>0

STEP 5: Integrate

//F dS = // (ry X 1y) dady
// y,x Sry —y, —, 1>dxdy

yw3z

// —y? — 2% 4 3aydady

27
:/ / (=r* + 3rcos(9)rsin(8)) rdrdd
027r O1
:/ / —r3 + 313 cos(0) sin(6)drdf
o Jo
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/ ) /017" (=1 + 3cos(0) sin(f)) drdf

0

(/olr ) ( W_l + 3 cos(0) sin(e)de)
0

()]
=7 (=

27)
-

2

I
»-lkli—‘,—.

There is again an explicit formula for [ [o F'-dS when S is the graph
of a function, but please don’t memorize it; just do it the way above.

5. TWO SURFACE INTEGRALS
Question: Are [ [, F-dS and [ [ fdS related? Yes!

S>>

= Unit normal vector (Length = 1)

B>
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Let’s look again at our surface integral:

//F-dS DEF//F-ﬁdudv
S D .
TR;CK//F. — ||| dudv
p 7|

~—
n

DEF// F -n||ry x ry|| dudv
D - -

ds

S

2 [ [ Ponas
S

Adult Surface Integral

So the surface integral of the vector field F' is the surface integral of
the function F'-n. This again expresses the fact that we’re summing
up the values of F' over the surface S.
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