LECTURE 41: DIVERGENCE THEOREM

Welcome to the third F'TC for vector fields. It’s the most powerful one
because it simplifies your work tremendously. It uses the concept of
divergence, which we recall now:

1. RECAP: DIVERGENCE

Divergence

If F=(P,Q,R), then div(F) = P, +Q, + R,

div(F') measures how much F' expands:

Date: Monday, December 6, 2021.
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2. THE DIVERGENCE THEOREM

Motivation: [ [F= [ [ [F

The Divergence Theorem

/ /S F-dS = / / /E div(F) dedydz

Here S is a closed surface and E the region inside S

F

Interpretation: If you add up all the mini-expansions div(F") over F,
you get the net flux of F' over S
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div(F)

3. EXAMPLES

Video: The Divergence Theorem

[ [
S

F = (3x,2y,—2z) and S : Sphere of Radius 2

Picture:

S


https://www.youtube.com/watch?v=QZL4LNuvbOQ
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div(F) = (32). + 2y)y + (—2). =3+2—-1=4

//SF-dS
:///Ediv(F) dxdydz
= [ [ [ 4dsdya:

=4 Vol(E)

~1(5) 7 @)

:—125” WOW

Video: The Divergence Theorem ]

[ [
S

F = <:cy, y? + F sin(a:y)>

S : Surface bounded by 22 + y> =1,2 =0, and y + 2 = 2

Picture:


https://www.youtube.com/watch?v=_j7PZLqZcK8
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Note: Evaluating [ [ F - dS directly is painful, you would have to
evaluate 3 different surface integrals!

/ /5 F.dS
_ / / [E div(F) dedyd:
_ / / /E (zy)s + (y2+e“2)y+(sin(wy))z
_ / / [E Y+ 2 +0
_ / / /E 3y dadyd:

Inequalities:
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0<z<2—y=2—-rsin(f)0< r<1
0<0 <27

/ / / 3y dxdydz
E
2r 1l p2—rsin(f)
:/ // 3rsin(f) rdzdrdd
o Jo Jo

_ /0 " /O 302 n(6) (2 — r sin(6))drd6

27 1
:/ / 6r2 sin(#) — 3r° sin®(0)drdf
o Jo
1

:( /O 6r2dr> /O " in(8)d6 - ( /0 13r3dr> /0 " sn2(0)d6

=(2)(0) — Z/O W% — %cos(Q@)d@

3[60 1. o
= — Z [5 — ZSln(QQ)} .

3T
1

4. CLOSING A SURFACE



LECTURE 41: DIVERGENCE THEOREM 7

[ [
S

1
F = <22x, (5) 3 + tan(z), %2 + y2>

S : Top half of sphere 22 + y* + z* = 1 (without bottom)

STEP 1: Picture:

A

S S+’

/\ Sisnot closed! (doesn’t include the bottom lid), so need to close it!

Let S’ = bottom disk, then S + 5’ is closed, so by the Div Thm:



J L
///dv \dadyd:
/// ( y® + tan(z >y+(a:22+y2)z dadyd:z
/// 4o+ 2 dudydz
// /ppsn 6) dpdbdd
([ o) ([ 5

0
L
/
0
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STEP 2: [ [, F -dS (bottom disk)

Make sure that n points downwards here (because want outward
orientation)

(1) Parametrize: r(z,y) = (z,y,0) (or use polar coordinates)
(2) Partial Derivatives: r, = (1,0,0),r, = (0,1, 0)

(3) Normal Vector

= (0,0,1)

— O
o O F

i
n=r,xXr,=|1
0
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Since we want 7 to point downwards, we choose 1 = (0,0, —1)

(

1)
[[Fas
://DF-ﬁda:dy

1
:// <0£L’2 + gy?’ + tan(0), 2%(0) + y2> -(0,0, —1) dzdy
D

= / / —ydwdy D : Disk of radius 1
27rD 1
:/ / —r?sin?(0)rdrdf
o Jo
1 27
= </ —r3dr> </ sin2(9)d0>
0 0
1\ (71 1
_(-z S Zcos(2
( 4)/0 5 2COS( )do

2w

STEP 3: [ [, F-dS (Sphere part)

//g+S/F'dS:/ng‘dS+/[g/F-ds
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//F-dS:// F-dS—//F-dS
S S+5’ /

21 s

()

_137r

20

5. STOKES’ THEOREM (IF TIME PERMITS)

Video: Stokes’ Theorem

Let’s get Stoked for our fourth and final FTC for vector fields: Stokes’

Theorem!
Motivation: //F': /F

Stokes’ Theorem

If S is surface with boundary curve C', then:

//Scurl(F)-dS:/cF-dr



https://www.youtube.com/watch?v=-fYbBSiqvUw
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Note: Here I'll just give a quick example. I'll remind you what curl
is next time, since we won’t need it for now.

Example 4:
Evaluate | [y curl(F)-dS

F = (zz,y%,7y)

S is the paraboloid z = 1 — 22 — y? above the zy—plane

STEP 1: Picture:

S/\ fi

Z = 1-X>-y*

=)

C /+\

>
\%

/\ Orientation matters! If you're walking on C' with your head in the
direction of n, then S should be to your LEFT

Mnemonic: WALK LEFT
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So here C' is counterclockwise (most of the time it is)

STEP 2: By Stokes:

[ [ewtry-as = [ Far

C is a circle of radius 1 (z = 1 — 22 — y* and 2z = 0 gives 2° + 3*> = 1)

STEP 3: Parametrize C: r(t) = (cos(t),sin(t),0),0 <t < 27

/F-dr
C

_ /O CRO() (e

:/0 chos(t)(O), sin®(t), cos(t) sin(t)) - {—sin(?), cos(t), 0) dt

'y 7
-~ ~"~

(x2,y2,xy) ' (t)

_ /0 7 2(t) cos(t)de

)

=0

Note: For a more interesting version of this problem, check out:

Video: Integral over a Barrel



https://www.youtube.com/watch?v=d_CdXE2VxB4
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