LECTURE 42: STOKES' THEOREM

There's a saying in German that says "Everything has an end, except for a sausage, which has two"¹ And with this, I would like to welcome you to the final lecture of your final calculus course!

1. STOKES' THEOREM

Previously on I'm so Stoked, we learned about an amazing theorem that relates line integrals with surface integrals.

Last time: We used Stokes to calculate $\int \int_S \operatorname{curl}(F)$, but today we'll use it to calculate $\int_C F \cdot dr$

Date: Wednesday, December 8, 2021.

¹Alles hat ein Ende, nur die Wurst, die hat zwei

2. A Cylindrical Example

Video: Stokes' Theorem

Example 1:

Evaluate $\int_C F \cdot dr$, where $F = \langle xy, yz, xz \rangle$ and C is the curve of intersection of z = y + 2 and $x^2 + y^2 = 1$ (in the counterclockwise direction)

STEP 1: Picture

STEP 2: By Stokes, we have:

$$\int_C F \cdot dr = \int \int_S \operatorname{curl}(F) \cdot d\mathbf{S}$$

$$\begin{aligned} \operatorname{curl}(F) &= \nabla \times F \\ &= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & yz & xz \end{vmatrix} \\ &= \left\langle \frac{\partial}{\partial y} (xz) - \frac{\partial}{\partial z} (yz), -\frac{\partial}{\partial x} (xz) + \frac{\partial}{\partial z} (xy), \frac{\partial}{\partial x} (yz) - \frac{\partial}{\partial y} (xy) \right\rangle \\ &= \langle -y, -z, -x \rangle \qquad EASIER \end{aligned}$$

STEP 3: What is S?

Stokes' Miracle

S can be anything we want, as long as the boundary of S is C

This is because $\int_C F \cdot dr$ only depends on C, not on S at all.

Analogy: Think of S as a hot air balloon, then as long as the string C is still the same, it doesn't matter what the shape of the balloon is.

Easiest choice: Let S be the interior (inside) of C.

Parametrize S:

$$r(x,y) = \left\langle x, y, \underbrace{y+2}_{z} \right\rangle$$
$$r_{x} = \langle 1, 0, 0 \rangle$$
$$r_{y} = \langle 0, 1, 1 \rangle$$
$$\hat{n} = r_{x} \times r_{y} = \begin{vmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \langle 0, -1, 1 \rangle$$

(Mentally check WALK Left, that is, S is to the left of the curve C) **STEP 4:**

$$\begin{split} \int_{C} F \cdot dr &= \int \int_{S} \operatorname{curl} F \cdot d\mathbf{S} \\ &= \int \int_{D} \underbrace{\langle -y, -(y+2), -x \rangle}_{\langle -y, -z, -x \rangle} \cdot \underbrace{\langle 0, -1, 1 \rangle}_{\hat{n}} dx dy \\ &= \int \int_{D} y + 2 - x dx dy \qquad \text{(D is a disk of radius 1)} \\ &= \int_{0}^{2\pi} \int_{0}^{1} (r \sin(\theta) + 2 - r \cos(\theta)) r dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} r^{2} \sin(\theta) + 2r - r^{2} \cos(\theta) dr d\theta \\ &= \left(\int_{0}^{1} r^{2} dr \right) \left(\int_{0}^{2\pi} \sin(\theta) d\theta \right) + 2\pi \left(\int_{0}^{1} 2r dr \right) \\ &- \left(\int_{0}^{1} r^{2} dr \right) \left(\int_{0}^{2\pi} \cos(\theta) d\theta \right) \\ &= 0 + 2\pi (1) - 0 \\ &= 2\pi \end{split}$$

3. INTUITION

Stokes is nothing other than a 3D analog of Green:

Recall: Green's Theorem

$$\underbrace{\int_{C} F \cdot dr}_{\text{Macro Rotation}} = \underbrace{\int \int_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy}_{\text{Sum of Micro-Rotations}}$$

Stokes says the same thing, but in 3D:

Analogy: Suppose you want to count the number of cars in a parking lot. You could either walk around the lot and count all the cars $(\int_C F \cdot dr)$ or you could walk inside the lot and count how many cars

go in and out of the lot $(\int \int_S F \cdot d\mathbf{S})$

4. A Spherical Example

Video: More Stokes' Theorem

Example 2:

Calculate $\int_C F \cdot dr$ where $F = \langle x + y^2, y + z^2, z + x^2 \rangle$ and C is the boundary of the hemisphere $z = \sqrt{4 - x^2 - y^2}$ in the xy-plane (oriented counterclockwise)

STEP 1: Picture

$$\int_C F \cdot dr = \int \int_S \operatorname{curl}(F) \cdot d\mathbf{S}$$

$$\operatorname{curl}(F) = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + y^2 & y + z^2 & z + x^2 \end{vmatrix}$$
$$= \left\langle \frac{\partial}{\partial y} (z + x^2) - \frac{\partial}{\partial z} (y + z^2), -\frac{\partial}{\partial x} (z + x^2) + \frac{\partial}{\partial z} (x + y^2), -\frac{\partial}{\partial x} (y + z^2) - \frac{\partial}{\partial y} (x + y^2) \right\rangle$$
$$= \left\langle -2z, -2x, -2y \right\rangle \qquad EASIER$$

STEP 3: What is S?

Here C is a circle of radius 2, because if you let z=0 in $z=\sqrt{4-x^2-y^2}$ you get $x^2+y^2=4$

So let S be the **DISK** of radius 2 in the xy-plane!

Parametrize: $r(x,y) = \langle x, y, 0 \rangle$

Slopes: $r_x = \langle 1, 0, 0 \rangle, r_y = \langle 0, 1, 0 \rangle$

Normal Vector:

$$\hat{n} = r_x \times r_y = \begin{vmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \langle 0, 0, 1 \rangle$$

STEP 4:

$$\int_{C} F \cdot dr = \int \int_{S} \operatorname{curl}(F) \cdot d\mathbf{S}$$

$$= \int \int_{D} \underbrace{\langle 0, -2x, -2y \rangle}_{\langle -2z, -2x, -2y \rangle} \cdot \underbrace{\langle 0, 0, 1 \rangle}_{\hat{n}} dx dy$$

$$= \int \int_{D} -2y dx dy \qquad \text{(D is a disk of radius 2)}$$

$$= \int_{0}^{2\pi} \int_{0}^{2} -2r \sin(\theta) r dr d\theta$$

$$= \left(\int_{0}^{2} -2r^{2} dr \right) \left(\int_{0}^{2\pi} \sin(\theta) d\theta \right)$$

$$= 0$$

5. Concluding Remarks

Remark 1:

Recall IF $F = \langle P, Q, R \rangle$ is conservative, **THEN** curl $(F) = \langle 0, 0, 0 \rangle$ Now if $\operatorname{curl}(F) = \langle 0, 0, 0 \rangle$ (and no holes), then for any closed C,

$$\int_{C} F \cdot dr = \int \int_{S} \underbrace{\operatorname{curl}(F)}_{\langle 0,0,0 \rangle} \cdot d\mathbf{S} = 0$$

So ${\cal F}$ is conservative by neat fact from 16.3

Hence we have: F conservative $\Leftrightarrow \operatorname{curl}(F) = \langle 0, 0, 0 \rangle$

Remark 2: Important: If S is closed, then:

$$\int \int_{S} \operatorname{curl}(F) \cdot d\mathbf{S} \stackrel{DIV}{=} \int \int \int_{E} \underbrace{\operatorname{div}(\operatorname{curl}(F))}_{0} = 0$$

Point: Stokes in only interesting for *open* surfaces, where there is a boundary curve C

Remark 3: Stokes **FAILS** when there is a hole.

Cohomology Theory: How badly does it fail? Gives us interesting information about the *topology* of the domain, think spheres vs donuts

Alright!!! This is officially the end of calculus adventure! Thank you for flying Peyam Airlines, it's been a pleasure having you on board, and I wish you a safe onward journey!

