## LECTURE 42: STOKES' THEOREM

There's a saying in German that says "Everything has an end, except for a sausage, which has two" And with this, I would like to welcome you to the final lecture of your final calculus course!

## 1. Stokes' Theorem

Previously on I'm so Stoked, we learned about an amazing theorem that relates line integrals with surface integrals.

## Stokes' Theorem

Let $S$ be a surface with boundary $C$, then:

$$
\int_{C} F \cdot d r=\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}
$$



Last time: We used Stokes to calculate $\iint_{S} \operatorname{curl}(F)$, but today we'll use it to calculate $\int_{C} F \cdot d r$

Date: Wednesday, December 8, 2021.
${ }^{1}$ Alles hat ein Ende, nur die Wurst, die hat zwei

## 2. A Cylindrical Example

## Video: Stokes' Theorem

## Example 1:

Evaluate $\int_{C} F \cdot d r$, where $F=\langle x y, y z, x z\rangle$ and $C$ is the curve of intersection of $z=y+2$ and $x^{2}+y^{2}=1$ (in the counterclockwise direction)

## STEP 1: Picture




STEP 2: By Stokes, we have:

$$
\int_{C} F \cdot d r=\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}
$$

$$
\begin{aligned}
\operatorname{curl}(F) & =\nabla \times F \\
& =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & y z & x z
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y}(x z)-\frac{\partial}{\partial z}(y z),-\frac{\partial}{\partial x}(x z)+\frac{\partial}{\partial z}(x y), \frac{\partial}{\partial x}(y z)-\frac{\partial}{\partial y}(x y)\right\rangle \\
& =\langle-y,-z,-x\rangle \quad \text { EASIER }
\end{aligned}
$$

STEP 3: What is $S$ ?

## Stokes' Miracle

$S$ can be anything we want, as long as the boundary of $S$ is $C$


This is because $\int_{C} F \cdot d r$ only depends on $C$, not on $S$ at all.
Analogy: Think of $S$ as a hot air balloon, then as long as the string $C$ is still the same, it doesn't matter what the shape of the balloon is.

Easiest choice: Let $S$ be the interior (inside) of $C$.
Parametrize $S$ :

$$
\begin{aligned}
r(x, y) & =\langle x, y, \underbrace{y+2}_{z}\rangle \\
r_{x} & =\langle 1,0,0\rangle \\
r_{y} & =\langle 0,1,1\rangle \\
\hat{n}=r_{x} \times r_{y} & =\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=\langle 0,-1,1\rangle
\end{aligned}
$$

(Mentally check WALK Left, that is, $S$ is to the left of the curve $C$ ) STEP 4:

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{S} \operatorname{curl} F \cdot d \mathbf{S} \\
& =\iint_{D} \underbrace{\langle-y,-(y+2),-x\rangle}_{\langle-y,-z,-x\rangle} \cdot \underbrace{\langle 0,-1,1\rangle}_{\hat{n}} d x d y \\
& =\iint_{D} y+2-x d x d y \quad(\mathrm{D} \text { is a disk of radiu } \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(r \sin (\theta)+2-r \cos (\theta)) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sin (\theta)+2 r-r^{2} \cos (\theta) d r d \theta \\
& =\left(\int_{0}^{1} r^{2} d r\right)\left(\int_{0}^{2 \pi} \sin (\theta) d \theta\right)+2 \pi\left(\int_{0}^{1} 2 r d r\right) \\
& -\left(\int_{0}^{1} r^{2} d r\right)\left(\int_{0}^{2 \pi} \cos (\theta) d \theta\right) \\
& =0+2 \pi(1)-0 \\
& =2 \pi
\end{aligned}
$$

## 3. Intuition

Stokes is nothing other than a $3 D$ analog of Green:

## Recall: Green's Theorem

$$
\underbrace{\int_{C} F \cdot d r}_{\text {Macro Rotation }}=\underbrace{\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y}_{\text {Sum of Micro-Rotations }}
$$



Stokes says the same thing, but in 3D:

$$
\begin{aligned}
& \text { Stokes: } \\
& \qquad \underbrace{\int_{C} F \cdot d r}_{\text {Macro Circulation }}=\underbrace{\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}}_{\text {Sum of Micro Rotations }}
\end{aligned}
$$



Analogy: Suppose you want to count the number of cars in a parking lot. You could either walk around the lot and count all the cars ( $\int_{C} F \cdot d r$ ) or you could walk inside the lot and count how many cars
go in and out of the $\operatorname{lot}\left(\iint_{S} F \cdot d \mathbf{S}\right)$

## 4. A Spherical Example

## Video: More Stokes' Theorem

## Example 2:

Calculate $\int_{C} F \cdot d r$ where $F=\left\langle x+y^{2}, y+z^{2}, z+x^{2}\right\rangle$ and $C$ is the boundary of the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ in the $x y$-plane (oriented counterclockwise)

STEP 1: Picture


STEP 2: By Stokes:

$$
\begin{gathered}
\int_{C} F \cdot d r=\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S} \\
\operatorname{curl}(F)=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y^{2} & y+z^{2} & z+x^{2}
\end{array}\right| \\
=\left\langle\frac{\partial}{\partial y}\left(z+x^{2}\right)-\frac{\partial}{\partial z}\left(y+z^{2}\right),-\frac{\partial}{\partial x}\left(z+x^{2}\right)+\frac{\partial}{\partial z}\left(x+y^{2}\right),\right. \\
\\
\left.\frac{\partial}{\partial x}\left(y+z^{2}\right)-\frac{\partial}{\partial y}\left(x+y^{2}\right)\right\rangle \\
=\langle-2 z,-2 x,-2 y\rangle \quad \text { EASIER }
\end{gathered}
$$

## STEP 3: What is S?

Here $C$ is a circle of radius 2, because if you let $z=0$ in $z=$ $\sqrt{4-x^{2}-y^{2}}$ you get $x^{2}+y^{2}=4$

So let $S$ be the DISK of radius 2 in the $x y$-plane!


Parametrize: $r(x, y)=\langle x, y, 0\rangle$
Slopes: $r_{x}=\langle 1,0,0\rangle, r_{y}=\langle 0,1,0\rangle$
Normal Vector:

$$
\hat{n}=r_{x} \times r_{y}=\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=\langle 0,0,1\rangle
$$

## STEP 4:

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S} \\
& =\iint_{D} \underbrace{\langle 0,-2 x,-2 y\rangle}_{\langle-2 z,-2 x,-2 y\rangle} \cdot \underbrace{\langle 0,0,1\rangle}_{\hat{n}} d x d y \\
& =\iint_{D}-2 y d x d y \quad(\mathrm{D} \text { is a disk of radius } 2) \\
& =\int_{0}^{2 \pi} \int_{0}^{2}-2 r \sin (\theta) r d r d \theta \\
& =\left(\int_{0}^{2}-2 r^{2} d r\right)\left(\int_{0}^{2 \pi} \sin (\theta) d \theta\right) \\
& =0
\end{aligned}
$$

## 5. Concluding Remarks

## Remark 1:

## Recall

IF $F=\langle P, Q, R\rangle$ is conservative, THEN $\operatorname{curl}(F)=\langle 0,0,0\rangle$

Now if $\operatorname{curl}(F)=\langle 0,0,0\rangle$ (and no holes), then for any closed $C$,


$$
\int_{C} F \cdot d r=\iint_{S} \underbrace{\operatorname{curl}(F)}_{\langle 0,0,0\rangle} \cdot d \mathbf{S}=0
$$

So $F$ is conservative by neat fact from 16.3
Hence we have: $F$ conservative $\Leftrightarrow \operatorname{curl}(F)=\langle 0,0,0\rangle$
Remark 2: Important: If $S$ is closed, then:


$$
\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S} \stackrel{D I V}{=} \iiint_{E} \underbrace{\operatorname{div}(\operatorname{curl}(F))}_{0}=0
$$

Point: Stokes in only interesting for open surfaces, where there is a boundary curve $C$


Remark 3: Stokes FAILS when there is a hole.
Cohomology Theory: How badly does it fail? Gives us interesting information about the topology of the domain, think spheres vs donuts

Alright!!! This is officially the end of calculus adventure! Thank you for flying Peyam Airlines, it's been a pleasure having you on board, and I wish you a safe onward journey!
THe 厄्End

