LECTURE 5: LIMITS OF SEQUENCES (II)

Today is all about practice with the definition of the limit

1. Example 1: The Basics

Video: Limit Example 1: The Basics
Example 1:

$$
\text { Show: } \lim _{n \rightarrow \infty} 3-\frac{1}{n^{2}}=3
$$

Show: For all $\epsilon>0$ there is $N>0$ such that if $n>N$ then:

$$
\left|s_{n}-s\right|<\epsilon
$$

STEP 1: Find N
Note: This step is scratchwork and is technically not part of your proof. The goal here is to find N and you do that by solving for n in $\left|s_{n}-s\right|<\epsilon$:

$$
\left|s_{n}-s\right|=\left|\left(3-\frac{1}{n^{2}}\right)-3\right|=\left|-\frac{1}{n^{2}}\right|=\frac{1}{n^{2}}<\epsilon
$$

Which gives $n^{2}>\frac{1}{\epsilon} \Rightarrow n>\sqrt{\frac{1}{\epsilon}}=\frac{1}{\sqrt{\epsilon}}$.

Date: Tuesday, September 14, 2021.

Therefore let $N=\frac{1}{\sqrt{\epsilon}}$ (Note that N is not necessarily an integer)
STEP 2: Our actual proof:
Let $\epsilon>0$ be given and let $N=\frac{1}{\sqrt{\epsilon}}$. Then if $n>N=\frac{1}{\sqrt{\epsilon}}$, we have:

$$
\left|s_{n}-s\right|=\left|3-\frac{1}{n^{2}}-3\right|=\left|\frac{-1}{n^{2}}\right|=\frac{1}{n^{2}}
$$

But if $n>\sqrt{\frac{1}{\epsilon}}$, then $n^{2}>\frac{1}{\epsilon}$, so $\frac{1}{n^{2}}<\epsilon$, and hence

$$
\left|s_{n}-s\right|=\frac{1}{n^{2}}<\epsilon \checkmark
$$

Therefore $\lim _{n \rightarrow \infty} 3-\frac{1}{n^{2}}=3$

2. Example 2: Simple Fraction

Video: Limit Example 2: Simple Fraction

Example 2:

$$
\lim _{n \rightarrow \infty} \frac{2 n+4}{4 n+5}=\frac{1}{2}
$$

Note: Intuitively this should be true because

$$
\frac{2 n+4}{4 n+5} \approx \frac{2 n}{4 n}=\frac{2}{4}=\frac{1}{2}
$$

Show for all $\epsilon>0$ there is N such that if $n>N$, then $\left|s_{n}-s\right|<\epsilon$
STEP 1: Find N

$$
\begin{aligned}
\left|s_{n}-s\right| & =\left|\frac{2 n+4}{4 n+5}-\frac{1}{2}\right|=\left|\frac{(2 n+4)(2)-(4 n+5)}{2(4 n+5)}\right| \\
& =\left|\frac{4 n+8-4 n-5}{2(4 n+5)}\right|=|\underbrace{\frac{3}{2(4 n+5)}}_{>0}|=\frac{3}{2(4 n+5)}<\epsilon
\end{aligned}
$$

$$
\text { However, } \quad \frac{3}{2(4 n+5)}<\epsilon
$$

$$
\Rightarrow \frac{1}{4 n+5}<\frac{2 \epsilon}{3}
$$

$$
\Rightarrow 4 n+5>\frac{3}{2 \epsilon}
$$

$$
\Rightarrow 4 n>\frac{3}{2 \epsilon}-5
$$

$$
\Rightarrow n>\frac{3}{8 \epsilon}-\frac{5}{4}
$$

This suggests to let $N=\frac{3}{8 \epsilon}-\frac{5}{4}$.
STEP 2: Let $\epsilon>0$ be given, let $N=\frac{3}{8 \epsilon}-\frac{5}{4}$, then if $n>N$, we have

$$
\left|s_{n}-s\right|=\frac{3}{2(4 n+5)}
$$

But if $n>N$, then

$$
4 n+5>4\left(\frac{3}{8 \epsilon}-\frac{5}{4}\right)+5=\frac{3}{2 \epsilon}-5+5=\frac{3}{2 \epsilon}
$$

Therefore $\frac{1}{4 n+5}<\frac{2 \epsilon}{3}$, and so

$$
\left|s_{n}-s\right|=\frac{3}{2(4 n+5)}<\left(\frac{3}{2}\right)\left(\frac{2 \epsilon}{3}\right)=\epsilon \checkmark
$$

Therefore $\lim _{n \rightarrow \infty} \frac{2 n+4}{4 n+5}=\frac{1}{2}$
IMPORTANT: Your absolutely HAVE to write down both steps, even if it seems repetitive (Because Step 1 is just scratch work to find N, but in step 2 , you're proving that your N works). Otherwise you'll lose points on the exam.

3. Example 3: A Complex Fraction

Video: Limit Example 3: A Complex Fraction

Example 3:

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n}{n^{3}-2}=2
$$

Intuitively this is true because $\frac{2 n^{3}+3 n}{n^{3}-2} \approx \frac{2 n^{3}}{n^{3}}=2$

STEP 1:

$$
\begin{aligned}
\left|s_{n}-s\right| & =\left|\frac{2 n^{3}+3 n}{n^{3}-2}-2\right| \\
& =\left|\frac{2 n^{3}+3 n-2\left(n^{3}-2\right)}{n^{3}-2}\right| \\
& =\left|\frac{3 n+4}{n^{3}-2}\right| \\
& =\frac{3 n+4}{n^{3}-2} \quad \text { if } n^{3}-2>0 \\
& <\epsilon
\end{aligned}
$$

Note: $n^{3}-2>0 \Rightarrow n>\sqrt[3]{2}$, so we ăt least need $n>\sqrt[3]{2}$.
Unlike the previous problem, here the fraction is trickier. We need to analyze the numerator and denominator separately.

Numerator: We want $3 n+4<$ some number. But notice that if $n>1$, then $4 n>4$, so $4<4 n$, so $3 n+4<3 n+4 n=7 n$.

Hence $3 n+4<7 n$
Denominator: We want $n^{3}-2>$ some large number (because we'll take reciprocals). The idea is that, even though $n^{3}-2<n^{3}$, we still have $n^{3}-2>\frac{n^{3}}{2}$ for large $\left.n,\right]^{1]}$ as in the picture below:

But $n^{3}-2>\frac{n^{3}}{2} \Rightarrow\left(1-\frac{1}{2}\right) n^{3}>2 \Rightarrow \frac{n^{3}}{2}>2 \Rightarrow n^{3}>4 \Rightarrow n>\sqrt[3]{4}$

[^0]Hence $n^{3}-2>\frac{n^{3}}{2}$ so $\frac{1}{n^{3}-2}<\frac{1}{\frac{n^{3}}{2}}$.
Fraction: Therefore, if both of the above conditions hold, we get:

$$
\frac{3 n+4}{n^{3}-2}<\frac{7 n}{\frac{n^{3}}{2}}=\frac{14 n}{n^{3}}=\frac{14}{n^{2}}
$$

And therefore

$$
\frac{14}{n^{2}}<\epsilon \Rightarrow \frac{n^{2}}{14}>\frac{1}{\epsilon} \Rightarrow n^{2}>\frac{14}{\epsilon} \Rightarrow n>\sqrt{\frac{14}{\epsilon}}
$$

This suggests to let $N=\sqrt{\frac{14}{\epsilon}}$, but since we also need $n>\sqrt[3]{2}$, $n>1$ and $n>\sqrt[3]{4}$ (see boxed numbers above), N actually needs to be the larger one of those 4 numbers, in other words N is the max of $\sqrt[3]{2}, 1, \sqrt[3]{4}, \sqrt{\frac{14}{\epsilon}}$
STEP 2: Let $\epsilon>0$ and let $N=\max \left\{\sqrt[3]{2}, 1, \sqrt[3]{4}, \sqrt{\frac{14}{\epsilon}}\right\}=\max \left\{\sqrt[3]{4}, \sqrt{\frac{14}{\epsilon}}\right\}$ (since $\sqrt[3]{4}>1$ and $\sqrt[3]{4}>\sqrt[3]{2}$)

Then if $n>N$, we have:

$$
\begin{aligned}
\left|s_{n}-s\right| & =\left|\frac{2 n^{3}+3 n}{n^{3}-2}-2\right| \\
& =\left|\frac{3 n+4}{n^{3}-2}\right| \\
& =\frac{3 n+4}{n^{3}-2} \\
& \quad \text { Since } n>\sqrt[3]{2}, \text { so } n^{3}-2>0 \\
& =\frac{7 n}{n^{3}-2} \\
& \text { Since } n>1 \text { so } 3 n+4<3 n+4 n=7 n \\
& =\frac{14}{n^{2}} \\
& \text { Since } n>\sqrt[3]{4} \text { so } n^{3}-2>\frac{n^{3}}{2} \\
& \text { But } n>\sqrt{\frac{14}{\epsilon}} \Rightarrow n^{2}>\frac{14}{\epsilon} \Rightarrow \frac{1}{n^{2}}<\frac{\epsilon}{14}
\end{aligned}
$$

Therefore:

$$
\left|s_{n}-s\right|=\frac{14}{n^{2}}<14\left(\frac{\epsilon}{14}\right)=\epsilon \checkmark
$$

Hence $\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n}{n^{3}-2}=2$

4. Example 4: The Limit Does Not Exist

Video: Limit Example 4: The Limit Does Not Exist
In this example, we'll see what happens when (to quote Mean Girls)

Example 4:

Show that the following limit does not exist:

$$
\lim _{n \rightarrow \infty}(-1)^{n}
$$

This is hard to do directly, so let's do it by contradiction!
(1) Suppose $\lim _{n \rightarrow \infty} s_{n}=s$ for some s.

Let $\epsilon>0$ be TBA.

Then there is $N>0$ such that if $n>N$ then:

$$
\left|(-1)^{n}-s\right|<\epsilon
$$

(2) If n is even, this becomes:

$$
|1-s|=|s-1|<\epsilon \Rightarrow-\epsilon<s-1<\epsilon \Rightarrow 1-\epsilon<s<1+\epsilon
$$

(3) If n is odd, then we get:

$$
|-1-s|=|s+1|<\epsilon \Rightarrow-\epsilon<s+1<\epsilon \Rightarrow-1-\epsilon<s<-1+\epsilon
$$

(4) Finally, choose $\epsilon>0$ such that $-1+\epsilon \leq 1-\epsilon$ (for instance $\epsilon=1$ works). Then we get the contradiction:

$$
s<-1+\epsilon \leq 1-\epsilon<s \Rightarrow \Leftarrow
$$

Therefore $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.

5. Example 5: Square Roots

Video: Limit Example 5: Square Roots

Let's continue our practice with limits, this time with square roots!

Example 5:

Show that if $s_{n} \geq 0$ for all n and $\lim _{n \rightarrow \infty} s_{n}=s$, then

$$
\lim _{n \rightarrow \infty} \sqrt{s_{n}}=\sqrt{s}
$$

(This will later show that $f(x)=\sqrt{x}$ is continuous)
Note: In this proof, assume $s>0$. The case $s=0$ can be dealt with separately (see problem 3 in section 8).

Show for all $\epsilon>0$ there is N such that if $n>N$, then $\left|\sqrt{s_{n}}-\sqrt{s}\right|<\epsilon$.
STEP 1: Scratch work
Just like in Calculus, it's useful to multiply $\sqrt{s_{n}}-\sqrt{s}$ by its conjugate form $\frac{\sqrt{s_{n}}+\sqrt{s}}{\sqrt{s_{n}}+\sqrt{s}}$:

$$
\begin{aligned}
\left|\sqrt{s_{n}}-\sqrt{s}\right| & =\left|\left(\sqrt{s_{n}}-\sqrt{s}\right)\left(\frac{\sqrt{s_{n}}+\sqrt{s}}{\sqrt{s_{n}}+\sqrt{s}}\right)\right| \\
& =\left|\frac{\left(\sqrt{s_{n}}\right)^{2}-(\sqrt{s})^{2}}{\sqrt{s_{n}}+\sqrt{s}}\right| \quad(A-B)(A+B)=A^{2}-B^{2} \\
& =\left|\frac{s_{n}-s}{\sqrt{s_{n}}+\sqrt{s}}\right| \\
& =\frac{\left|s_{n}-s\right|}{\sqrt{s_{n}}+\sqrt{s}}
\end{aligned}
$$

Now the numerator is small (by assumption) and for the denominator, notice that $\sqrt{s_{n}}+\sqrt{s} \geq \sqrt{s}$ (doesn't depend on n), hence

$$
\frac{\left|s_{n}-s\right|}{\sqrt{s_{n}}+\sqrt{s}} \leq \frac{\left|s_{n}-s\right|}{\sqrt{s}}<\epsilon \Rightarrow\left|s_{n}-s\right|<(\sqrt{s}) \epsilon
$$

STEP 2: Actual Proof
Let $\epsilon>0$ be given, then there is N such that if $n>N$, then $\left|s_{n}-s\right|<(\sqrt{s}) \epsilon$.

But then, for that same N, if $n>N$, we get:

$$
\left|\sqrt{s_{n}}-\sqrt{s}\right|=\frac{\left|s_{n}-s\right|}{\sqrt{s_{n}}+\sqrt{s}} \leq \frac{\left|s_{n}-s\right|}{\sqrt{s}}<\frac{(\sqrt{s}) \epsilon}{\sqrt{s}}=\epsilon \checkmark
$$

Hence $\lim _{n \rightarrow \infty} \sqrt{s_{n}}=\sqrt{s}$

[^0]: ${ }^{1}$ There's nothing special about the factor $\frac{1}{2}$, we could have also done $\frac{n^{3}}{3}$, that's completely fine

