
LECTURE 5: LIMITS OF SEQUENCES (II)

Today is all about practice with the definition of the limit

1. Example 1: The Basics

Video: Limit Example 1: The Basics

Example 1:

Show: lim
n→∞

3− 1

n2
= 3

Show: For all ϵ > 0 there is N > 0 such that if n > N then:

|sn − s| < ϵ

STEP 1: Find N

Note: This step is scratchwork and is technically not part of your
proof. The goal here is to find N and you do that by solving for n in
|sn − s| < ϵ:

|sn − s| =
∣∣∣∣(3− 1

n2

)
− 3

∣∣∣∣ = ∣∣∣∣− 1

n2

∣∣∣∣ = 1

n2
< ϵ

Which gives n2 > 1
ϵ ⇒ n >

√
1
ϵ =

1√
ϵ
.
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https://youtu.be/iEtXwH1hrMg
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Therefore let N = 1√
ϵ
(Note that N is not necessarily an integer)

STEP 2: Our actual proof:

Let ϵ > 0 be given and let N = 1√
ϵ
. Then if n > N = 1√

ϵ
, we have:

|sn − s| =
∣∣∣∣3− 1

n2
− 3

∣∣∣∣ = ∣∣∣∣−1

n2

∣∣∣∣ = 1

n2

But if n >
√

1
ϵ , then n2 > 1

ϵ , so
1
n2 < ϵ, and hence

|sn − s| = 1

n2
< ϵ✓

Therefore limn→∞ 3− 1
n2 = 3 □

2. Example 2: Simple Fraction

Video: Limit Example 2: Simple Fraction

Example 2:

lim
n→∞

2n+ 4

4n+ 5
=

1

2

Note: Intuitively this should be true because

2n+ 4

4n+ 5
≈ 2n

4n
=

2

4
=

1

2

Show for all ϵ > 0 there is N such that if n > N , then |sn − s| < ϵ

STEP 1: Find N

https://youtu.be/sDI8J-GxVrY
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|sn − s| =
∣∣∣∣2n+ 4

4n+ 5
− 1

2

∣∣∣∣ = ∣∣∣∣(2n+ 4)(2)− (4n+ 5)

2(4n+ 5)

∣∣∣∣
=

∣∣∣∣4n+ 8− 4n− 5

2(4n+ 5)

∣∣∣∣ =
∣∣∣∣∣∣∣∣

3

2(4n+ 5)︸ ︷︷ ︸
>0

∣∣∣∣∣∣∣∣ =
3

2(4n+ 5)
< ϵ

However,
3

2(4n+ 5)
<ϵ

⇒ 1

4n+ 5
<
2ϵ

3

⇒ 4n+ 5 >
3

2ϵ

⇒ 4n >
3

2ϵ
− 5

⇒ n >
3

8ϵ
− 5

4

This suggests to let N = 3
8ϵ −

5
4 .

STEP 2: Let ϵ > 0 be given, let N = 3
8ϵ −

5
4 , then if n > N , we have

|sn − s| = 3

2(4n+ 5)

But if n > N , then

4n+ 5 > 4

(
3

8ϵ
− 5

4

)
+ 5 =

3

2ϵ
− 5 + 5 =

3

2ϵ

Therefore 1
4n+5 <

2ϵ
3 , and so

|sn − s| = 3

2(4n+ 5)
<

(
3

2

)(
2ϵ

3

)
= ϵ✓
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Therefore limn→∞
2n+4
4n+5 =

1
2

IMPORTANT: Your absolutely HAVE to write down both steps,
even if it seems repetitive (Because Step 1 is just scratch work to find
N , but in step 2, you’re proving that your N works). Otherwise you’ll
lose points on the exam.

3. Example 3: A Complex Fraction

Video: Limit Example 3: A Complex Fraction

Example 3:

lim
n→∞

2n3 + 3n

n3 − 2
= 2

Intuitively this is true because 2n3+3n
n3−2 ≈ 2n3

n3 = 2

STEP 1:

|sn − s| =
∣∣∣∣2n3 + 3n

n3 − 2
− 2

∣∣∣∣
=

∣∣∣∣∣2n3 + 3n− 2
(
n3 − 2

)
n3 − 2

∣∣∣∣∣
=

∣∣∣∣3n+ 4

n3 − 2

∣∣∣∣
=
3n+ 4

n3 − 2
ĭf n3 − 2 > 0

<ϵ

https://youtu.be/Kd57zQrFCSo
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Note: n3 − 2 > 0 ⇒ n > 3
√
2, so we ăt least need n > 3

√
2 .

Unlike the previous problem, here the fraction is trickier. We need to
analyze the numerator and denominator separately.

Numerator: We want 3n + 4 < some number. But notice that if
n > 1 , then 4n > 4, so 4 < 4n, so 3n+ 4 < 3n+ 4n = 7n.

Hence 3n+ 4 < 7n

Denominator: We want n3 − 2 > some large number (because we’ll
take reciprocals). The idea is that, even though n3 − 2 < n3, we still

have n3 − 2 > n3

2 for large n,1 as in the picture below:

But n3−2 >
n3

2
⇒

(
1− 1

2

)
n3 > 2 ⇒ n3

2
> 2 ⇒ n3 > 4 ⇒ n >

3
√
4

1There’s nothing special about the factor 1
2 , we could have also done n3

3 , that’s completely fine
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Hence n3 − 2 > n3

2 so 1
n3−2 <

1
n3

2

.

Fraction: Therefore, if both of the above conditions hold, we get:

3n+ 4

n3 − 2
<

7n
n3

2

=
14n

n3
=

14

n2

And therefore

14

n2
< ϵ ⇒ n2

14
>

1

ϵ
⇒ n2 >

14

ϵ
⇒ n >

√
14

ϵ

This suggests to let N =
√

14
ϵ , but since we also need n > 3

√
2,

n > 1 and n > 3
√
4 (see boxed numbers above), N actually needs

to be the larger one of those 4 numbers, in other words N is the max

of 3
√
2, 1, 3

√
4,
√

14
ϵ

STEP 2: Let ϵ > 0 and letN = max
{

3
√
2, 1, 3

√
4,
√

14
ϵ

}
= max

{
3
√
4,
√

14
ϵ

}
(since 3

√
4 > 1 and 3

√
4 > 3

√
2)
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Then if n > N , we have:

|sn − s| =
∣∣∣∣2n3 + 3n

n3 − 2
− 2

∣∣∣∣
=

∣∣∣∣3n+ 4

n3 − 2

∣∣∣∣
=
3n+ 4

n3 − 2
Since n >

3
√
2, so n3 − 2 > 0

<
7n

n3 − 2
Since n > 1 so 3n+ 4 < 3n+ 4n = 7n

=
7n
n3

2

Since n >
3
√
4 so n3 − 2 >

n3

2

=
14

n2

But n >

√
14

ϵ
⇒ n2 >

14

ϵ
⇒ 1

n2
<

ϵ

14

Therefore:

|sn − s| = 14

n2
< 14

( ϵ

14

)
= ϵ✓

Hence limn→∞
2n3+3n
n3−2 = 2 □

4. Example 4: The Limit Does Not Exist

Video: Limit Example 4: The Limit Does Not Exist

In this example, we’ll see what happens when (to quote Mean Girls)

https://youtu.be/YNZHffgp2Cs
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Example 4:

Show that the following limit does not exist:

lim
n→∞

(−1)n

This is hard to do directly, so let’s do it by contradiction!

(1) Suppose limn→∞ sn = s for some s.

Let ϵ > 0 be TBA.

Then there is N > 0 such that if n > N then:

|(−1)n − s| < ϵ
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(2) If n is even, this becomes:

|1− s| = |s− 1| < ϵ ⇒ −ϵ < s− 1 < ϵ ⇒ 1− ϵ < s < 1 + ϵ

(3) If n is odd, then we get:

|−1− s| = |s+ 1| < ϵ ⇒ −ϵ < s+ 1 < ϵ ⇒ −1− ϵ < s < −1 + ϵ

(4) Finally, choose ϵ > 0 such that −1 + ϵ ≤ 1 − ϵ (for instance
ϵ = 1 works). Then we get the contradiction:

s < −1 + ϵ ≤ 1− ϵ < s ⇒⇐

Therefore limn→∞(−1)n does not exist.

5. Example 5: Square roots

Video: Limit Example 5: Square Roots

Let’s continue our practice with limits, this time with square roots!

Example 5:

Show that if sn ≥ 0 for all n and limn→∞ sn = s, then

lim
n→∞

√
sn =

√
s

https://youtu.be/H7EERQW7KJg
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(This will later show that f(x) =
√
x is continuous)

Note: In this proof, assume s > 0. The case s = 0 can be dealt with
separately (see problem 3 in section 8).

Show for all ϵ > 0 there is N such that if n > N , then
∣∣√sn −

√
s
∣∣ < ϵ.

STEP 1: Scratch work

Just like in Calculus, it’s useful to multiply
√
sn−

√
s by its conjugate

form
√
sn+

√
s√

sn+
√
s
:

∣∣√sn −
√
s
∣∣ = ∣∣∣∣(√sn −

√
s
)(√

sn +
√
s

√
sn +

√
s

)∣∣∣∣
=

∣∣∣∣(√sn)
2 − (

√
s)2

√
sn +

√
s

∣∣∣∣ (A−B)(A+B) = A2 −B2

=

∣∣∣∣ sn − s
√
sn +

√
s

∣∣∣∣
=

|sn − s|
√
sn +

√
s

Now the numerator is small (by assumption) and for the denominator,
notice that

√
sn +

√
s ≥

√
s (doesn’t depend on n), hence

|sn − s|
√
sn +

√
s
≤ |sn − s|√

s
< ϵ ⇒ |sn − s| <

(√
s
)
ϵ

STEP 2: Actual Proof

Let ϵ > 0 be given, then there is N such that if n > N , then
|sn − s| < (

√
s) ϵ.
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But then, for that same N , if n > N , we get:

∣∣√sn −
√
s
∣∣ = |sn − s|

√
sn +

√
s
≤ |sn − s|√

s
<

(
√
s) ϵ√
s

= ϵ✓

Hence limn→∞
√
sn =

√
s □
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