LECTURE 5: FUN WITH PLANES

What is today's lecture about? Is it a bird? Is it a plane? Well yes, it's about planes!

1. Planes

Equation of a plane:
A plane has equation $a x+b y+c z+d=0$

Seems simple, but it the most important object in multivariable calculus, for reasons you'll see later in the course.

Date: Wednesday, September 8, 2021.

Just like for lines, where we had a direction vector, for planes we have a normal vector:

Definition:

$\mathbf{n}=\langle a, b, c\rangle$ is the normal vector to the plane $a x+b y+c z+d=0$
Normal is a synonym for perpendicular, and in fact:

Fact:

$\mathbf{n}=\langle a, b, c\rangle$ is always perpendicular to $a x+b y+c z+d=0$
And it's precisely this fact that allows us to find equations of planes.

Example 1:

Find the equation of the plane going through $(1,2,3)$ and with normal vector $\mathbf{n}=\langle 4,5,6\rangle$

Fact:

The plane has equation

$$
4(x-1)+5(y-2)+6(z-3)=0
$$

Can be rewritten as $4 x+5 y+6 z-32=0$, but ok to leave it like that
This says that, in order to find a plane, all we need is a point and a normal vector.

2. Properties

Example 2: (Good Quiz/Exam Question)

Find the equation of the plane containing the points

$$
A=(2,1,2), B=(-3,8,6), C=(-2,-3,1)
$$

(1) Point: $A=(2,1,2)(B$ or C would work as well $)$
(2) Normal Vector
(i) Notice that the following vectors \mathbf{a} and \mathbf{b} are on the plane:

$$
\begin{aligned}
\mathbf{a} & =\overrightarrow{A B} \\
\mathbf{b} & =\langle-3-2,8-1,6-2\rangle=\langle-5,7,4\rangle \\
\mathbf{b} & =\langle-2-2,-3-1,1-2\rangle=\langle-4,-4,-1\rangle
\end{aligned}
$$

(ii) Find a vector perpendicular to \mathbf{a} and \mathbf{b} (and hence to the plane)

Recall:

$\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}

$$
\begin{aligned}
\mathbf{n} & =\mathbf{a} \times \mathbf{b} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-5 & 7 & 4 \\
-4 & -4 & -1
\end{array}\right| \\
& =\left|\begin{array}{cc}
7 & 4 \\
-4 & -1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
-5 & 4 \\
-4 & -1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
-5 & 7 \\
-4 & -4
\end{array}\right| \mathbf{k} \\
& =(-7+16) \mathbf{i}-(5+16) \mathbf{j}+(20+28) \mathbf{k} \\
& =\langle 9,-21,48\rangle
\end{aligned}
$$

So $\mathbf{n}=\langle 9,-21,48\rangle$
(3) Equation: (Recall the point was $A=(2,1,2)$)

$$
9(x-2)-21(y-1)+48(z-2)=0
$$

Example 3:

Find the equation of the plane parallel to $-2 x+3 y-2 z=9$ which passes through the point $(2,0,3)$.

(1) Point: $(2,0,3)$
(2) Normal Vector: Two parallel planes have the same normal vector, hence $\mathbf{n}=\langle-2,3,-2\rangle$
(3) Equation: $-2(x-2)+3(y-0)-2(z-3)=0$

Example 4:

Find the angle between the planes $x+y-z=6$ and $x-y-2 z=5$

The normal vector to the plane $x+y-z=6$ is $\mathbf{n}_{1}=\langle 1,1,-1\rangle$ and the normal vector to the plane $x-y-2 z=5$ is $\mathbf{n}_{\mathbf{2}}=\langle 1,-1,-2\rangle$

The angle between the two planes is nothing other than the angle between the normal vectors. Therefore, by the angle formula, we have

$$
\mathbf{n}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{2}}=\left\|\mathbf{n}_{\mathbf{1}}\right\|\left\|\mathbf{n}_{\mathbf{2}}\right\| \cos (\theta)
$$

However, we have:

$$
\begin{aligned}
\mathbf{n}_{1} \cdot \mathbf{n}_{\mathbf{2}} & =1-1+2=2 \\
\left\|\mathbf{n}_{1}\right\| & =\sqrt{1+1+1}=\sqrt{3} \\
\left\|\mathbf{n}_{\mathbf{2}}\right\| & =\sqrt{1+1+4}=\sqrt{6}
\end{aligned}
$$

Therefore we get:

$$
\begin{aligned}
2 & =\sqrt{3} \sqrt{6} \cos (\theta) \\
\cos (\theta) & =\frac{2}{\sqrt{18}} \\
\theta & =\cos ^{-1}\left(\frac{2}{\sqrt{18}}\right) \\
\theta & \approx 62^{\circ}
\end{aligned}
$$

Note: You can find more examples and practice problems below, in case we don't get to them during lecture.

3. Distance between point and plane

Video: Distance between point and plane
Finally, let's talk about the celebrated distance formula, which gives a nice formula for the distance between a point and a plane.

Example 5:

Find the distance between the point $P=(1,2,3)$ and the plane $4 x+5 y+6 z=0$

(Notice here that $(0,0,0)$ is in the plane)
Trick: Let $\mathbf{u}=\langle 1,2,3\rangle$ (vector from $(0,0,0)$ to $P)$ and consider:

$$
\hat{u}=\operatorname{proj}_{\mathbf{n}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}
$$

Then, according to the picture above, the distance is given precisely by $\|\hat{\mathbf{u}}\|$, and so:

$$
\begin{aligned}
& \text { Distance }=\|\hat{\mathbf{u}}\| \\
& \stackrel{\text { DEF }}{=}\left|\mathrm{comp}_{\mathbf{n}} \mathbf{u}\right| \quad \text { (scalar projection) } \\
& \stackrel{\text { DEF }}{=} \frac{|\mathbf{n} \cdot \mathbf{u}|}{\|\mathbf{n}\|} \\
&=\frac{|\langle 4,5,6\rangle \cdot\langle 1,2,3\rangle|}{\sqrt{4^{2}+5^{2}+6^{2}}} \\
&=\frac{4(1)+5(2)+6(3)}{\sqrt{4^{2}+5^{2}+6^{2}}} \\
&=\frac{32}{\sqrt{77}}
\end{aligned}
$$

More generally, we obtain the celebrated distance formula (see this video for an optional full proof):

Distance Formula:

The distance between the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and the plane $a x+b y+c z+d=0$ is

$$
\text { Distance }=\frac{\left|a\left(x_{0}\right)+b\left(y_{0}\right)+c\left(z_{0}\right)+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Example 6:

Find the distance between the point $P=(2,3,-1)$ and the plane $3 x+2 y-3 z=2$

The equation of the plane can be written as $3 x+2 y-3 z-2=0$ and $P=(2,3,-1)$ and hence

$$
\begin{aligned}
\text { Distance } & =\frac{|(3)(2)+(2)(3)+(-3)(-1)+(-2)|}{\sqrt{3^{2}+2^{2}+(-3)^{2}}} \\
& =\frac{|6+6+3-2|}{\sqrt{9+4+9}} \\
& =\frac{13}{\sqrt{22}}
\end{aligned}
$$

4. More Practice

Note: There are more examples here than can comfortably fit in one lecture, but they are all important for your homework and quizzes/exams, so make sure to look at all of them.

Example 7:

Find the equation of the plane passing through $(3,-5,1)$ and perpendicular to the line L with equation $\mathbf{r}(t)=$ $\langle 2-8 t, 3-5 t, 6+7 t\rangle$

(1) Point: $(3,-5,1)$
(2) Normal Vector: By the picture above, the normal vector to the plane is the same as the direction vector of the line, which is $\langle-8,-5,7\rangle$, hence $\mathbf{n}=\langle-8,-5,7\rangle$
(3) Equation: $-8(x-3)-5(y+5)+7(z-1)=0$

Example 8:

Find an equation of the plane through $(1,2,3)$ and containing the line represented with equation $\mathbf{r}(t)=\langle 3 t, 6-2 t, 1-2 t\rangle$

Outline: This is simpler than it sounds! All you really need to do is find 3 points on the plane.

One point is $(1,2,3)$, and for the other two points, just find two other points on the line, for example $\mathbf{r}(0)=\langle 0,6,1\rangle$ and $\mathbf{r}(1)=$ $\langle 3(1), 6-2,1-2\rangle=\langle 3,4,-1\rangle$ (any other value works just fine)

Then find the equation of the plane that contains $A=(1,2,3), B=$ $(0,6,1)$ and $C=(3,4,-1)$, which you can do as in the example above (calculate $\overrightarrow{A B}$ and $\overrightarrow{A C}$ and take cross products etc.)

Example 9: (Good Quiz/Exam Question)

Find the vector equation of the line of intersection of the planes $2 x-2 y+z=4$ and $x+y+3 z=2$

(1) Point: For this we need one solution of

$$
\left\{\begin{aligned}
2 x-2 y+z & =4 \\
x+y+3 z & =2
\end{aligned}\right.
$$

For example, if we let $z=0$, we get

$$
\left\{\begin{array} { r }
{ 2 x - 2 y + 0 = 4 } \\
{ x + y + 0 = 2 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x - y + 0 = 2 } \\
{ x + y + 0 = 2 }
\end{array} \Rightarrow \left\{\begin{array} { r }
{ 2 x = 4 } \\
{ - 2 y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=2 \\
y=0
\end{array}\right.\right.\right.\right.
$$

Which gives the point $(2,0,0)$ (since $z=0)$
(2) Direction Vector: The normal vector to the first plane is $\mathbf{n}_{\mathbf{1}}=\langle 2,-2,1\rangle$ and the normal vector to the second plane is $\mathbf{n}_{\mathbf{2}}=\langle 1,1,3\rangle$.

By the picture above, the direction vector to the line is perpendicular to both $\mathbf{n}_{\mathbf{1}}$ and $\mathbf{n}_{\mathbf{2}}$, hence given by

$$
\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -2 & 1 \\
1 & 1 & 3
\end{array}\right|=(-6-1) \mathbf{i}-(6-1) \mathbf{j}+(2+2) \mathbf{k}=-7 \mathbf{i}-5 \mathbf{j}+4 \mathbf{k}=\langle-7,-5,4\rangle
$$

(3) Equation:

$$
\mathbf{r}(\mathbf{t})=\langle 2-7 t,-5 t, 4 t\rangle
$$

Example 10:

Find an equation of the line through $(8,2,0)$ and perpendicular to the plane $x+3 y+4 z=5$.

Not quite the same as before, since need to find the equation of a line
(1) Point: $(8,2,0)$
(2) Direction Vector: By the picture above, the direction vector of the line is the same as the normal vector of the plane, which is $\langle 1,3,4\rangle$
(3) Equation:

$$
\left\{\begin{array}{l}
x(t)=8+t \\
y(t)=2+3 t \\
z(t)=4 t
\end{array}\right.
$$

Example 11:

Find an equation of the plane consisting of all points that are equidistant ($=$ the same distance) to $A=(1,2,4)$ and $B=$ $(3,4,6)$

(1) Point: Notice that the midpoint of A and B is on the plane (since it's the same distance from A to B)

$$
\text { Midpoint }=\left(\frac{1+3}{2}, \frac{2+4}{2}, \frac{4+6}{2}\right)=(2,3,5)
$$

(2) Normal Vector: By the picture, the normal vector is (parallel) to $\overrightarrow{A B}=\langle 3-1,4-2,6-4\rangle=\langle 2,2,2\rangle$, so $\mathbf{n}=\langle 2,2,2\rangle$ ($\mathbf{n}=\langle 1,1,1\rangle$ is ok too)
(3) Equation:

$$
\begin{aligned}
2(x-2)+2(y-3)+2(z-5) & =0 \\
(x-2)+(y-3)+(z-5) & =0 \\
x+y+z & =10
\end{aligned}
$$

Example 12:

Find the distance between the (parallel) planes $x+y+2 z-4=0$ and $2 x+2 y+4 z-5=0$

Not as bad as it sounds!
STEP 1: Find one point on one plane.
For example, take $x+y+2 z-4=0$. Then for example set $x=0$ and $y=0$, and you get $0+0+2 z-4=0$ so $z=2$, which gives $P=(0,0,2)$

STEP 2: The distance is simply the distance between $P=(0,0,2)$ and the other plane $2 x+2 y+4 z-5=0$, which is:

$$
\text { Distance }=\frac{|(2)(0)+2(0)+4(2)-5|}{\sqrt{2^{2}+2^{2}+4^{2}}}=\frac{|8-5|}{\sqrt{4+4+16}}=\frac{3}{\sqrt{24}}
$$

