
LECTURE 5: WEIERSTRASS APPROXIMATION

1. The Weierstraß Approximation Theorem

The following result is really useful in Applied Mathematics. It says
that any continuous function can be approximated by polynomials:

Theorem: [Weierstraß Approximation Theorem]

If f is continuous on [a, b], then there is a sequence of polynomials Pn
such that Pn → f uniformly.

In practice f is a complicated function, but the Pn are much easier.

Note: This result is false on all of R or on open intervals (a, b)

Proof: STEP 1: Some simplifications:

• Assume [a, b] = [0, 1] (just for sake of notation)

• WLOG, assume f(0) = f(1) = 0 because otherwise apply the
result to

g(x) = f(x)− f(0)− x (f(1)− f(0))

Then g(0) = g(1) = 0 and if g can be approximated uniformly,
then so can f
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• Finally, define f to be zero outside [0, 1], so f is uniformly con-
tinuous on R

Main Idea: We want to define Pn via an integral:

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t)dt

Where Qn is a helper polynomial defined below.

Note: Pn is indeed a polynomial. If you use the u−sub u = x+ t then

Pn(x) =

∫ 1+x

−1+x
f(u)Qn(u− x)du =

∫ 1

0

f(u)Qn(u− x)du

(The last step is because f is 0 outside [0, 1] and 0 ≤ x ≤ 1)

And this is a polynomial in x because Qn is a polynomial. For exam-

ple, if Qn(u− x) = u− x then this is
(∫ 1

0 f(u)udu
)
− x

(∫ 1

0 f(u)du
)

STEP 2: Our Helper Function:

Let Qn(x) = cn
(
1− x2

)n
where cn =

1∫ 1

−1 (1− x2)n dx

This choice of cn makes
∫ 1

−1Qn = 1

Claim: cn <
√
n

Note: (1 − x2)n ≥ 1 − nx2 on [0, 1] This follows from Calculus I by
taking the difference and taking the derivative. Therefore
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∫ 1

−1

(
1− x2

)n
dx

Even
= 2

∫ 1

0

(
1− x2

)n
dx ≥ 2

∫ 1√
n

0

(
1− x2

)n
dx

Note
≥ 2

∫ 1√
n

0

1− nx2dx

=2

(
2

3
√
n

)
>

1√
n

Since that integral is 1
cn

by definition, we get cn <
√
n X

STEP 3: Main Proof:

Let ε > 0 be given. Since f is uniformly continuous, there is δ > 0
such that if |x− y| < δ then

|f(x)− f(y)| < ε

2

Let M = supx |f(x)|, then

|Pn(x)− f(x)| =

∣∣∣∣∣∣∣∣∣
∫ 1

−1
f(x+ t)Qn(t)dt− f(x)

1︷ ︸︸ ︷∫ 1

−1
Qn(t)dt

∣∣∣∣∣∣∣∣∣
≤
∫ 1

−1
|f(x+ t)− f(x)|Qn(t)dt

=

(∫ −δ
−1

+

∫ δ

−δ
+

∫ 1

δ

)
|f(x+ t)− f(x)|Qn(t)dt

Study of the last term:

Notice that from Qn = cn
(
1− x2

)n
and cn ≤

√
n, we get that on [δ, 1],

Qn ≤
√
n
(
1− δ2

)n
and hence
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∫ 1

δ

|f(x+ t)− f(x)|Qn(t)dt ≤
∫ 1

δ

|f(x+ t)|︸ ︷︷ ︸
≤M

+ |f(x)|︸ ︷︷ ︸
≤M

Qn(t)

≤2M

∫ 1

δ

√
n
(
1− δ2

)n
dt

≤2M
√
n
(
1− δ2

)n
(1− δ)︸ ︷︷ ︸
≤1

≤2M
√
n
(
1− δ2

)n
The same estimate holds for the first term.

Study of the middle term:

Notice that if t ∈ [−δ, δ], then |(x+ t)− x| = |t| ≤ δ and so by uniform
continuity we have |f(x+ t)− f(x)| < ε

2 so∫ δ

−δ
|f(x+ t)− f(x)|︸ ︷︷ ︸

< ε
2

Qn(t)dt ≤
ε

2

∫ δ

−δ
Qn︸ ︷︷ ︸
≤1

≤ ε

2

Therefore, putting everything together, we get

|Pn(x)− f(x)| ≤
(
2M
√
n
(
1− δ2

)n)
+
( ε

2

)
+
(
2M
√
n
(
1− δ2

)n)
= 4M

√
n
(
1− δ2

)2
+
ε

2

Since limn→∞
√
n
(
1− δ2

)n
= 0 (because 1− δ2 < 1) there is N so that

if n > N then the first term is < ε
2 , which makes |Pn(x)− f(x)| < ε �
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Note: There is also a way of constructing Pn explicitly, without inte-
grals, by sampling f at as many points as possible. See the proof of
Theorem 18 in Chapter 4 of Pugh’s book if you’re interested. That
proof uses Bernstein polynomials.

2. The Stone-Weierstraß Theorem

There is a nice generalization of this to more general function spaces.

Definition: A set A of functions is called an algebra if:

(1) f, g ∈ A ⇒ f + g ∈ A

(2) f ∈ A and c is a constant ⇒ cf ∈ A

(3) f, g ∈ A ⇒ fg ∈ A

(like a vector space, but also closed under multiplication)

Definition: A separates points if for every x 6= y there is f ∈ A
such that f(x) 6= f(y)

That is, there are so many functions in A that we can distinguish x
and y with functions. The negation of this is that there are x 6= y
such that for all f , we have f(x) = f(y), it wouldn’t be possible to
distinguish x and y using functions

Definition: A vanishes at no point if for every x there is f ∈ A
such that f(x) 6= 0
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The negation is there is x such that for all f we have f(x) = 0, so all
the functions would be 0 at that point.

Theorem: [Stone-Weierstraß Theorem] If K is a compact set and A
is an algebra of real continuous functions on K that separates points
and vanishes nowhere, then A is dense in C(K) (continuous functions
on K with sup norm)

So given f ∈ C(K) there is a sequence fn ∈ A such that fn → f
uniformly.

Example: A = polynomials in C[a, b], which is the Weierstraß Ap-
proximation Theorem above

Example: A = trigonometric polynomials in C[0, 2π], that is polyno-
mials of the form

n∑
k=0

ak cos(kx) +
n∑
k=0

ak sin(kx)

Which is the perfect transition to the next chapter, which is about
power series and Fourier series ,

Note: The same thing also works for complex functions provided you
also require that if f ∈ A then f ∈ A where f(x) = f(x) for all x.
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3. Power series

Recap: A power series is a series of the form

∞∑
n=0

cnx
n

It’s a special type of series of functions, the functions being power
functions

Recall: [Radius of convergence]

If R =:
1

lim supn→∞
n
√
|cn|

, then

(1) If x ∈ (−R,R), the series converges and defines a function

f(x) =
∞∑
n=0

cnx
n

In that case, we say that f has a power series expansion
around x = 0 or that f is analytic

(2) If x /∈ [−R,R], the series diverges.

What we want to show now is that more is true strictly inside (−R,R)

Theorem: If r < R, the power series converges uniformly on [−r, r]

Proof:1 Yet another application of the WeierstraßM -test. Let s be
such that r < s < R.

1The proof is taken from Theorem 11 in Chapter 4 of Pugh’s book
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Notice lim supn→∞
n
√
|cn| = 1

R <
1
s so by definition of lim sup, we have

for all large n, n
√
|cn| < 1

s .

Hence, if |x| ≤ r then

|cnxn| ≤
(r
s

)n
=: Mn

But since
∑

n

(
r
s

)n
converges (Geometric series), by the WeierstraßM

test, the series
∑
cnx

n converges uniformly when x ∈ [−r, r] �

Note: It follows from uniform convergence of a series that f is con-
tinuous on (−R,R)

Theorem: [Integration and Differentiation] If f(x) =
∑∞

n=0 cnx
n and

|x| < R, then ∫ x

0

f(t)dt =
∞∑
n=0

cn
n+ 1

xn+1 =
∞∑
n=1

cn−1
n
xn

f ′(x) =
∞∑
n=1

ncnx
n−1

Proof:2 Term-by-term integration is valid on [−r, r] for every r < R
by uniform convergence. We just need to check that the radius of
convergence is the same, but

lim sup
n→∞

n

√∣∣∣cn−1
n

∣∣∣ = lim sup
n→∞

(
|cn−1|

1
n−1

)n−1
n

(
1

n

) 1
n

=

(
1

R

)1

(1) =
1

R

So indeed the radius of convergence is the same.

2The proof is taken from Theorem 12 in Chapter 4 of Pugh’s book
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For the derivative, a similar calculation shows that the radius of con-
vergence is the same. Since the derivative series converges uniformly on
every [−r, r], the original series can be differentiated term by term �

The result above shows that power series f(x) =
∑
cnx

n is infinitely
differentiable, since the series can be differentiated as many times as
we want inside (−R,R)


	1. The Weierstraß Approximation Theorem
	2. The Stone-Weierstraß Theorem
	3. Power series

