LECTURE 5: WEIERSTRASS APPROXIMATION

1. The Weierstrass Approximation Theorem

 The following result is really useful in Applied Mathematics. It says that any continuous function can be approximated by polynomials:Theorem: [Weierstraß Approximation Theorem]
If f is continuous on $[a, b]$, then there is a sequence of polynomials P_{n} such that $P_{n} \rightarrow f$ uniformly.

In practice f is a complicated function, but the P_{n} are much easier.
Note: This result is false on all of \mathbb{R} or on open intervals (a, b)

Proof: STEP 1: Some simplifications:

- Assume $[a, b]=[0,1]$ (just for sake of notation)
- WLOG, assume $f(0)=f(1)=0$ because otherwise apply the result to

$$
g(x)=f(x)-f(0)-x(f(1)-f(0))
$$

Then $g(0)=g(1)=0$ and if g can be approximated uniformly, then so can f

- Finally, define f to be zero outside $[0,1]$, so f is uniformly continuous on \mathbb{R}

Main Idea: We want to define P_{n} via an integral:

$$
P_{n}(x)=\int_{-1}^{1} f(x+t) Q_{n}(t) d t
$$

Where Q_{n} is a helper polynomial defined below.
Note: P_{n} is indeed a polynomial. If you use the $u-\operatorname{sub} u=x+t$ then

$$
P_{n}(x)=\int_{-1+x}^{1+x} f(u) Q_{n}(u-x) d u=\int_{0}^{1} f(u) Q_{n}(u-x) d u
$$

(The last step is because f is 0 outside $[0,1]$ and $0 \leq x \leq 1$)
And this is a polynomial in x because Q_{n} is a polynomial. For example, if $Q_{n}(u-x)=u-x$ then this is $\left(\int_{0}^{1} f(u) u d u\right)-x\left(\int_{0}^{1} f(u) d u\right)$

STEP 2: Our Helper Function:

$$
\text { Let } Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n} \text { where } c_{n}=\frac{1}{\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x}
$$

This choice of c_{n} makes $\int_{-1}^{1} Q_{n}=1$
Claim: $c_{n}<\sqrt{n}$
Note: $\left(1-x^{2}\right)^{n} \geq 1-n x^{2}$ on $[0,1]$ This follows from Calculus I by taking the difference and taking the derivative. Therefore

$$
\begin{aligned}
& \int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \stackrel{\text { Even }}{=} 2 \int_{0}^{1}\left(1-x^{2}\right)^{n} d x \geq 2 \int_{0}^{\frac{1}{\sqrt{n}}}\left(1-x^{2}\right)^{n} d x \stackrel{\text { Note }}{\geq} 2 \int_{0}^{\frac{1}{\sqrt{n}}} 1-n x^{2} d x \\
&=2\left(\frac{2}{3 \sqrt{n}}\right)>\frac{1}{\sqrt{n}}
\end{aligned}
$$

Since that integral is $\frac{1}{c_{n}}$ by definition, we get $c_{n}<\sqrt{n} \checkmark$

STEP 3: Main Proof:

Let $\epsilon>0$ be given. Since f is uniformly continuous, there is $\delta>0$ such that if $|x-y|<\delta$ then

$$
|f(x)-f(y)|<\frac{\epsilon}{2}
$$

Let $M=\sup _{x}|f(x)|$, then

$$
\begin{aligned}
\left|P_{n}(x)-f(x)\right| & =|\int_{-1}^{1} f(x+t) Q_{n}(t) d t-f(x) \overbrace{\int_{-1}^{1} Q_{n}(t) d t}^{1}| \\
& \leq \int_{-1}^{1}|f(x+t)-f(x)| Q_{n}(t) d t \\
& =\left(\int_{-1}^{-\delta}+\int_{-\delta}^{\delta}+\int_{\delta}^{1}\right)|f(x+t)-f(x)| Q_{n}(t) d t
\end{aligned}
$$

Study of the last term:

Notice that from $Q_{n}=c_{n}\left(1-x^{2}\right)^{n}$ and $c_{n} \leq \sqrt{n}$, we get that on $[\delta, 1]$, $Q_{n} \leq \sqrt{n}\left(1-\delta^{2}\right)^{n}$ and hence

$$
\begin{aligned}
\int_{\delta}^{1}|f(x+t)-f(x)| Q_{n}(t) d t & \leq \int_{\delta}^{1}(\underbrace{|f(x+t)|}_{\leq M}+\underbrace{|f(x)|}_{\leq M}) Q_{n}(t) \\
& \leq 2 M \int_{\delta}^{1} \sqrt{n}\left(1-\delta^{2}\right)^{n} d t \\
& \leq 2 M \sqrt{n}\left(1-\delta^{2}\right)^{n} \underbrace{(1-\delta)}_{\leq 1} \\
& \leq 2 M \sqrt{n}\left(1-\delta^{2}\right)^{n}
\end{aligned}
$$

The same estimate holds for the first term.

Study of the middle term:

Notice that if $t \in[-\delta, \delta]$, then $|(x+t)-x|=|t| \leq \delta$ and so by uniform continuity we have $|f(x+t)-f(x)|<\frac{\epsilon}{2}$ so

$$
\int_{-\delta}^{\delta} \underbrace{|f(x+t)-f(x)|}_{<\frac{\epsilon}{2}} Q_{n}(t) d t \leq \frac{\epsilon}{2} \underbrace{\int_{-\delta}^{\delta} Q_{n}}_{\leq 1} \leq \frac{\epsilon}{2}
$$

Therefore, putting everything together, we get

$$
\begin{aligned}
\left|P_{n}(x)-f(x)\right| \leq\left(2 M \sqrt{n}\left(1-\delta^{2}\right)^{n}\right)+\left(\frac{\epsilon}{2}\right) & +\left(2 M \sqrt{n}\left(1-\delta^{2}\right)^{n}\right) \\
& =4 M \sqrt{n}\left(1-\delta^{2}\right)^{2}+\frac{\epsilon}{2}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \sqrt{n}\left(1-\delta^{2}\right)^{n}=0$ (because $1-\delta^{2}<1$) there is N so that if $n>N$ then the first term is $<\frac{\epsilon}{2}$, which makes $\left|P_{n}(x)-f(x)\right|<\epsilon$

Note: There is also a way of constructing P_{n} explicitly, without integrals, by sampling f at as many points as possible. See the proof of Theorem 18 in Chapter 4 of Pugh's book if you're interested. That proof uses Bernstein polynomials.

2. The Stone-Weierstrass Theorem

There is a nice generalization of this to more general function spaces.
Definition: A set \mathcal{A} of functions is called an algebra if:
(1) $f, g \in \mathcal{A} \Rightarrow f+g \in \mathcal{A}$
(2) $f \in \mathcal{A}$ and c is a constant $\Rightarrow c f \in \mathcal{A}$
(3) $f, g \in \mathcal{A} \Rightarrow f g \in \mathcal{A}$
(like a vector space, but also closed under multiplication)
Definition: \mathcal{A} separates points if for every $x \neq y$ there is $f \in \mathcal{A}$ such that $f(x) \neq f(y)$

That is, there are so many functions in \mathcal{A} that we can distinguish x and y with functions. The negation of this is that there are $x \neq y$ such that for all f, we have $f(x)=f(y)$, it wouldn't be possible to distinguish x and y using functions

Definition: \mathcal{A} vanishes at no point if for every x there is $f \in \mathcal{A}$ such that $f(x) \neq 0$

The negation is there is x such that for all f we have $f(x)=0$, so all the functions would be 0 at that point.

Theorem: [Stone-Weierstraß Theorem] If K is a compact set and \mathcal{A} is an algebra of real continuous functions on K that separates points and vanishes nowhere, then \mathcal{A} is dense in $C(K)$ (continuous functions on K with sup norm)

So given $f \in C(K)$ there is a sequence $f_{n} \in \mathcal{A}$ such that $f_{n} \rightarrow f$ uniformly.

Example: $\mathcal{A}=$ polynomials in $C[a, b]$, which is the Weierstraß Approximation Theorem above

Example: $\mathcal{A}=$ trigonometric polynomials in $C[0,2 \pi]$, that is polynomials of the form

$$
\sum_{k=0}^{n} a_{k} \cos (k x)+\sum_{k=0}^{n} a_{k} \sin (k x)
$$

Which is the perfect transition to the next chapter, which is about power series and Fourier series ©

Note: The same thing also works for complex functions provided you also require that if $f \in \mathcal{A}$ then $\bar{f} \in \mathcal{A}$ where $\bar{f}(x)=\overline{f(x)}$ for all x.

3. Power Series

Recap: A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}
$$

It's a special type of series of functions, the functions being power functions

Recall: [Radius of convergence]

$$
\text { If } R=: \frac{1}{\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}}, \text { then }
$$

(1) If $x \in(-R, R)$, the series converges and defines a function

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

In that case, we say that f has a power series expansion around $x=0$ or that f is analytic
(2) If $x \notin[-R, R]$, the series diverges.

What we want to show now is that more is true strictly inside $(-R, R)$
Theorem: If $r<R$, the power series converges uniformly on $[-r, r$] Proof $]$ Yet another application of the Weierstraß M-test. Let s be such that $r<s<R$.

[^0]Notice $\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=\frac{1}{R}<\frac{1}{s}$ so by definition of limsup, we have for all large $n, \sqrt[n]{\left|c_{n}\right|}<\frac{1}{s}$.

Hence, if $|x| \leq r$ then

$$
\left|c_{n} x^{n}\right| \leq\left(\frac{r}{s}\right)^{n}=: M_{n}
$$

But since $\sum_{n}\left(\frac{r}{s}\right)^{n}$ converges (Geometric series), by the Weierstraß M test, the series $\sum c_{n} x^{n}$ converges uniformly when $x \in[-r, r]$

Note: It follows from uniform convergence of a series that f is continuous on $(-R, R)$

Theorem: [Integration and Differentiation] If $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ and $|x|<R$, then

$$
\begin{aligned}
\int_{0}^{x} f(t) d t & =\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} x^{n+1}=\sum_{n=1}^{\infty} \frac{c_{n-1}}{n} x^{n} \\
f^{\prime}(x) & =\sum_{n=1}^{\infty} n c_{n} x^{n-1}
\end{aligned}
$$

Proof: ${ }^{2}$ Term-by-term integration is valid on $[-r, r]$ for every $r<R$ by uniform convergence. We just need to check that the radius of convergence is the same, but

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|\frac{c_{n-1}}{n}\right|}=\limsup _{n \rightarrow \infty}\left(\left|c_{n-1}\right|^{\frac{1}{n-1}}\right)^{\frac{n-1}{n}}\left(\frac{1}{n}\right)^{\frac{1}{n}}=\left(\frac{1}{R}\right)^{1}(1)=\frac{1}{R}
$$

So indeed the radius of convergence is the same.

[^1]For the derivative, a similar calculation shows that the radius of convergence is the same. Since the derivative series converges uniformly on every $[-r, r]$, the original series can be differentiated term by term

The result above shows that power series $f(x)=\sum c_{n} x^{n}$ is infinitely differentiable, since the series can be differentiated as many times as we want inside $(-R, R)$

[^0]: ${ }^{1}$ The proof is taken from Theorem 11 in Chapter 4 of Pugh's book

[^1]: ${ }^{2}$ The proof is taken from Theorem 12 in Chapter 4 of Pugh's book

