LECTURE 5: WEIERSTRASS APPROXIMATION

1. THE WEIERSTRASS APPROXIMATION THEOREM

The following result is really useful in Applied Mathematics. It says
that any continuous function can be approximated by polynomials:

Theorem: [Weierstral Approximation Theorem]

If f is continuous on [a, b], then there is a sequence of polynomials P,
such that P, — f uniformly.

In practice f is a complicated function, but the P, are much easier.
Note: This result is false on all of R or on open intervals (a, b)
Proof: STEP 1: Some simplifications:

e Assume [a,b] = [0, 1] (just for sake of notation)

e WLOG, assume f(0) = f(1) = 0 because otherwise apply the
result to

g(x) = f(z) = f(0) =2 (f(1) = f(0))

Then ¢(0) = g(1) = 0 and if g can be approximated uniformly,
then so can f
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e Finally, define f to be zero outside [0, 1], so f is uniformly con-
tinuous on R

Main Idea: We want to define P, via an integral:

Py(x) = / o 0Qu (e

Where @), is a helper polynomial defined below.

Note: P, is indeed a polynomial. If you use the u—sub u = z +1¢ then

P = [ @ 2)du= [ 5@y )

142

(The last step is because f is 0 outside [0,1] and 0 <z < 1)

And this is a polynomial in x because (), is a polynomial. For exam-

ple, if @Q,(u — x) = u — x then this is (fol f(u)udu) —x (fol f(u)du)

STEP 2: Our Helper Function:

Let Qn(x) =c, (1 — x2)n where ¢, = —

This choice of ¢, makes f_ll Q, =1
Claim: ¢, < /n

Note: (1 —2?)" > 1 — nz? on [0,1] This follows from Calculus I by
taking the difference and taking the derivative. Therefore
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Since that integral is Ci by definition, we get ¢, < \/n v’
STEP 3: Main Proof:

Let € > 0 be given. Since f is uniformly continuous, there is 6 > 0
such that if |z — y| < J then

[f(x) = fly)] <

Let M = sup, |f(x)|, then

1

——N—
1

Pu(a) — f(a)] = / Fa 4 0Qu0: ~ flo) / Qu(t)dt

-1

< / 1@+ 0) = @] Q0

) </5+/i+/5> x4+ 1) = f(2)] Qu(t)dt

Study of the last term:

Notice that from @, = ¢, (1 — 2%)" and ¢, < \/n, we get that on [§, 1],
Qn < /1 (1—6%)" and hence
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/5 @+ ) — f(2)] Qu(t)dt < /5 o+ 0]+ 72} | @10)
§2M/1\/ﬁ(1—62)ndt
1)

<2M+/n (1-6%)" (1 -9)

<2M+/n (1 -46%)"
The same estimate holds for the first term.

Study of the middle term:

Notice that if t € [—6, 6], then |(z + t) — x| = |t| < 0 and so by uniform
continuity we have |f(z +t) — f(z)] < § so

6 )
< I

<1

o

Therefore, putting everything together, we get

P(e) = fl@)] < @MV (1-6)") + (5) + MV (1= 8)")

:4M\/ﬁ(1—52)2+§

Since lim, o /70 (1 — 52)n = 0 (because 1 — 6% < 1) there is N so that
if n > N then the first term is < §, which makes |P,(z) — f(z)| <e O
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Note: There is also a way of constructing P, explicitly, without inte-
grals, by sampling f at as many points as possible. See the proof of
Theorem 18 in Chapter 4 of Pugh’s book if you're interested. That
proof uses Bernstein polynomials.

2. THE STONE-WEIERSTRASS THEOREM

There is a nice generalization of this to more general function spaces.
Definition: A set A of functions is called an algebra if:

(1) f,ge A= f+ge A

(2) f € A and cis a constant = cf € A

B) frge A= fge A

(like a vector space, but also closed under multiplication)

Definition: A separates points if for every x # y there is f € A
such that f(z) # f(y)

That is, there are so many functions in A that we can distinguish x
and y with functions. The negation of this is that there are x # y
such that for all f, we have f(x) = f(y), it wouldn’t be possible to
distinguish  and y using functions

Definition: A vanishes at no point if for every x there is f € A
such that f(z) #0
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The negation is there is z such that for all f we have f(x) = 0, so all
the functions would be 0 at that point.

Theorem: [Stone-Weierstral Theorem] If K is a compact set and A
is an algebra of real continuous functions on K that separates points
and vanishes nowhere, then A is dense in C'(K) (continuous functions
on K with sup norm)

So given f € C(K) there is a sequence f,, € A such that f, — f
uniformly.

Example: A = polynomials in C|a,b], which is the Weierstral Ap-
proximation Theorem above

Example: A = trigonometric polynomials in C[0, 27], that is polyno-
mials of the form

n n
Z ay cos(kx) + Z a sin(kx)
k=0 k=0
Which is the perfect transition to the next chapter, which is about
power series and Fourier series ©

Note: The same thing also works for complex functions provided you
also require that if f € A then f € A where f(z) = f(z) for all x.
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3. POWER SERIES

Recap: A power series is a series of the form

(e.¢]

g "

n=0
It’s a special type of series of functions, the functions being power

functions

Recall: [Radius of convergence]

If R=: ! then

limsup,, ., /]ca|

(1) If x € (—R, R), the series converges and defines a function

oo

f(z) = Z cpx”

n=0

In that case, we say that f has a power series expansion
around x = 0 or that f is analytic

(2) If x ¢ [—R, R], the series diverges.

What we want to show now is that more is true strictly inside (—R, R)
Theorem: If r < R, the power series converges uniformly on [—7, 7]

Prooff] Yet another application of the WeierstraB M-test. Let s be
such that » < s < R.

IThe proof is taken from Theorem 11 in Chapter 4 of Pugh’s book
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Notice lim sup,,_,, v/|ca| = % < % so by definition of lim sup, we have
for all large n, {/]c,| < 1.

Hence, if |z| < r then
n
lepx| < (g) =: M,

But since Y, (£)" converges (Geometric series), by the Weierstrafy M
test, the series ) ¢,z" converges uniformly when x € [—r, 7] ]

Note: It follows from uniform convergence of a series that f is con-
tinuous on (—R, R)

Theorem: [Integration and Differentiation] If f(z) =3 7 c,2™ and
|z| < R, then

x 00 c 00 c

. n n+l n—1 n

/Of(t)dt_znﬂx =2 n
n=0 n=1

f(z) = i ne, "t
n=1

Proof:ﬂ Term-by-term integration is valid on [—r, 7] for every r < R
by uniform convergence. We just need to check that the radius of
convergence is the same, but

c L 1! 1
oo {52 = () (3) = (7) 0=

So indeed the radius of convergence is the same.

2The proof is taken from Theorem 12 in Chapter 4 of Pugh’s book
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For the derivative, a similar calculation shows that the radius of con-
vergence is the same. Since the derivative series converges uniformly on
every [—r,r], the original series can be differentiated term by term [

The result above shows that power series f(x) = > ¢,2" is infinitely
differentiable, since the series can be differentiated as many times as
we want inside (—R, R)
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